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Abstract

The topics of this chapter are the purely geometric aspects of the vision about physics
as an infinite-dimensional Kähler geometry of configuration space or the “world of classical
worlds”(WCW), with “classical world” identified either as 3-D surface of the unique Bohr orbit
like 4-surface traversing through it. The non-determinism of Kähler action forces to generalize
the notion of 3-surfaces so that unions of space-like surfaces with time like separations must
be allowed. The considerations are restricted mostly to real context and the problems related
to the p-adicization are discussed later.

There are two separate tasks involved.

1. Provide WCW with Kähler geometry which is consistent with 4-dimensional general co-
ordinate invariance so that the metric is Diff4 degenerate. General coordinate invariance
implies that the definition of metric must assign to a give 3-surface X3 a 4-surface as a
kind of Bohr orbit X4(X3).

2. Provide the WCW with a spinor structure. The great idea is to identify WCW gamma
matrices in terms of super algebra generators expressible using second quantized fermionic
oscillator operators for induced free spinor fields at the space-time surface assignable to a
given 3-surface. The isometry generators and contractions of Killing vectors with gamma
matrices would thus form a generalization of Super Kac-Moody algebra.

From the experience with loop spaces one can expect that there is no hope about exis-
tence of well-defined Riemann connection unless this space is union of infinite-dimensional
symmetric spaces with constant curvature metric and simple considerations requires that Ein-
stein equations are satisfied by each component in the union. The coordinates labeling these
symmetric spaces are zero modes having interpretation as genuinely classical variables which
do not quantum fluctuate since they do not contribute to the line element of the WCW. The
construction of WCW Kähler geometry requires also the identification of complex structure
and thus complex coordinates of WCW. A natural identification of symplectic coordinates is
as classical symplectic Noether charges and their canonical conjugates.

There are three approaches to the construction of the Kähler metric.

1. Direct construction of Kähler function as action associated with a preferred Bohr orbit
like extremal for some physically motivated action action leads to a unique result using
standard formula once complex coordinates of WCW have been identified. The realiation
in practice is not easy-

2. Second approach is group theoretical and is based on a direct guess of isometries of
the infinite-dimensional symmetric space formed by 3-surfaces with fixed values of zero
modes. The group of isometries is generalization of Kac-Moody group obtained by re-
placing finite-dimensional Lie group with the group of symplectic transformations of
δM4

+×CP2, where δM4
+ is the boundary of 4-dimensional future light-cone. The guesses

for the Kähler metric rely on the symmetry considerations but have suffered from ad hoc
character.

3. The third approach identifies the elements of WCW Kähler metric as anti-commutators
of WCW gamma matrices identified as super-symplectic super-generators defined as
Noether charges for Kähler- Dirac action. This approach leads to explicit formulas and
to a natural generalization of the super-symplectic algebra to Yangian giving additional
poly-local contributions to WCW metric. Contributions are expressible as anticommu-
tators of super-charges associated with strings and one ends up to a generalization of
AdS/CFT duality stating in the special case that the expression for WCW Kähler met-
ric in terms of Kähler function is equivalent with the expression in terms of fermionic
super-charges associated with strings connecting partonic 2-surfaces.

1 Introduction

The topics of this chapter are the purely geometric aspects of the vision about physics as an
infinite-dimensional Kähler geometry of the “world of classical worlds”, with “ classical world”
identified either as light-like 3-D surface of the unique Bohr orbit like 4-surface traversing through
it. The non-determinism of Kähler action forces to generalize the notion of 3-surface so that unions
of space-like surfaces with time like separations must be allowed. Zero energy ontology allows to
formulate this picture elegantly in terms of causal diamonds defined as intersections of future and
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past directed light-cones. Also a a geometric realization of coupling constant evolution and finite
measurement resolution emerges.

There are two separate but closely related tasks involved.

1. Provide WCW with Kähler geometry which is consistent with 4-dimensional general coordi-
nate invariance so that the metric is Diff4 degenerate. General coordinate invariance implies
that the definition of the metric must assign to a given light-like 3-surface X3 a 4-surface as
a kind of Bohr orbit X4(X3).

2. Provide WCW with a spinor structure. The great idea is to identify WCW gamma matrices
in terms of super algebra generators expressible using second quantized fermionic oscillator
operators for induced free spinor fields at the space-time surface assignable to a given 3-
surface. The isometry generators and contractions of Killing vectors with gamma matrices
would thus form a generalization of Super Kac-Moody algebra.

In this chapter a summary about basic ideas related to the construction of the Kähler geometry
of infinite-dimensional configuration of 3-surfaces (more or less-equivalently, the corresponding 4-
surfaces defining generalized Bohr orbits) or “world of classical worlds” (WCW).

1.1 The Quantum States Of Universe As Modes Of Classical Spinor
Field In The “World Of Classical Worlds”

The vision behind the construction of WCW geometry is that physics reduces to the geometry of
classical spinor fields in the infinite-dimensional WCW of 3-surfaces of M4

+ × CP2 or M4 × CP2,
where M4 and M4

+ denote Minkowski space and its light cone respectively. This WCW might be
called the “world of classical worlds”.

Hermitian conjugation is the basic operation in quantum theory and its geometrization requires
that WCW possesses Kähler geometry. One of the basic features of the Kähler geometry is that
it is solely determined by the so called. which defines both the J and the components of the g in
complex coordinates via the general formulas [A4]

J = i∂k∂l̄Kdz
k ∧ dz̄l .

ds2 = 2∂k∂l̄Kdz
kdz̄l . (1.1)

Kähler form is covariantly constant two-form and can be regarded as a representation of imaginary
unit in the tangent space of the WCW

JmrJ
rn = −g n

m . (1.2)

As a consequence Kähler form defines also symplectic structure in WCW.

1.2 WCW Kähler Metric From Kähler Function

The task of finding Kähler geometry for the WCW reduces to that of finding Kähler function
and identifying the complexification. The main constraints on the Kähler function result from the
requirement of Diff4 symmetry and degeneracy. requires that the definition of the Kähler function
assigns to a given 3-surface X3, which in Zero Energy Ontology is union of 3-surfaces at the
opposite boundaries of causal diamond CD, a unique space-time surface X4(X3), the generalized
Bohr orbit defining the classical physics associated with X3. The natural guess is that Kähler
function is defined by what might be called Kähler action, which is essentially Maxwell action with
Maxwell field expressible in terms of CP2 coordinates.

Absolute minimization was the first guess for how to fix X4(X3) uniquely. It has however
become clear that this option might well imply that Kähler is negative and infinite for the entire
Universe so that the vacuum functional would be identically vanishing. This condition can make
sense only inside wormhole contacts with Euclidian metric and positive definite Kähler action.

Quantum criticality of TGD Universe suggests the appropriate principle to be the criticality,
that is vanishing of the second variation of Kähler action. This principle now follows from the
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conservation of Noether currents the Kähler-Dirac action. This formulation is still rather abstract
and if spinors are localized to string world sheets, it it is not satisfactory. A further step in progress
was the realization that preferred extremals could carry vanishing super-conformal Noether charges
for sub-algebras whose generators have conformal weight vanishing modulo n with n identified in
terms of effective Planck constant heff/h = n.

If Kähler action would define a strictly deterministic variational principle, Diff4 degeneracy
and general coordinate invariance would be achieved by restricting the consideration to 3-surfaces
Y 3 at the boundary of M4

+ and by defining Kähler function for 3-surfaces X3 at X4(Y 3) and
diffeo-related to Y 3 as K(X3) = K(Y 3). The classical non-determinism of the Kähler action
however introduces complications. As a matter fact, the hierarchy of Planck constants has nice
interpretation in terms of non-determinism: the space-time sheets connecting the 3-surface at the
ends of CD form n conformal equivalence classes. This would correspond to the non-determinism
of quantum criticality accompanied by generalized conformal invariance

1.3 WCW Kähler Metric From Symmetries

A complementary approach to the problem of constructing configuration space geometry is based
on symmetries. The work of Dan [A2] [A2] has demonstrated that the Kähler geometry of loop
spaces is unique from the existence of Riemann connection and fixed completely by the Kac Moody
symmetries of the space. In 3-dimensional context one has even better reasons to expect uniqueness.
The guess is that WCW is a union of symmetric spaces labelled by zero modes not appearing in
the line element as differentials. The generalized conformal invariance of metrically 2-dimensional
light like 3-surfaces acting as causal determinants is the corner stone of the construction. The
construction works only for 4-dimensional space-time and embedding space which is a product of
four-dimensional Minkowski space or its future light cone with CP2.

The detailed formulas for the matrix elements of the Kähler metric however remain educated
guesses so that this approach is not entirely satisfactory.

1.4 WCW Kähler Metric As Anti-commutators Of Super-Symplectic
Super Noether Charges

The third approach identifies the Kähler metric of WCW as anti-commutators of WCW gamma
matrices. This is not yet enough to get concrete expressions but the identification of WCW
gamma matrices as Noether super-charges for super-symplectic algebra assignable to the boundary
of WCW changes the situation. One also obtains a direct connection with elementary particle
physics.

The super charges are linear in the mode of induced spinor field and second quantized spinor
field itself, and involve the infinitesimal action of symplectic generator on the spinor field. One
can fix fermionic anti-commutation relations by second quantization of the induced spinor fields
(as a matter fact, here one can still consider two options). Hence one obtains explicit expressions
for the matrix elements of WCW metric.

If the induced spinor fields are localized at string world sheets - as the well-definedness of em
charge and number theoretic arguments suggest - one obtains an expression for the matrix elements
of the metric in terms of 1-D integrals over strings connecting partonic 2-surfaces. If spinors are
localized to string world sheets also in the interior of CP2, the integral is over a closed circle and
could have a representation analogous to a residue integral so that algebraic continuation to p-adic
number fields might become straightforward.

The matrix elements of WCW metric are labelled by the conformal weights of spinor modes,
those of symplectic vector fields for light-like CD boundaries and by labels for the irreducible
representations of SO(3) acting on light-cone boundary δM4

± = R+ × S2 and of SU(3) acting in
CP2. The dependence on spinor modes and their conformal weights could not be guessed in the
approach based on symmetries only. The presence of two rather than only one conformal weights
distinguishes the metric from that for loop spaces [A2] and reflects the effective 2-dimensionality.
The metric codes a rather scarce information about 3-surfaces. This is in accordance with the
notion of finite measurement resolution. By increasing the number of partonic 2-surfaces and string
world sheets the amount of information coded - measurement resolution - increases. Fermionic
quantum state gives information about 3-geometry. The alternative expression for WCW metric
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in terms of Kähler function means analog of AdS/CFT duality: Kähler metric can be expressed
either in terms of Kähler action associated with the Euclidian wormhole contacts defining Kähler
function or in terms of the fermionic oscillator operators at string world sheets connecting partonic
2-surfaces.

In this chapter I will first consider the basic properties of the WCW, briefly discuss the various
approaches to the geometrization of the WCW, and introduce the alternative strategies for the
construction of Kähler metric based on a direct guess of Kähler function, on the group theoretical
approach assuming that WCW can be regarded as a union of symmetric spaces, and on the identifi-
cation of Kähler metric as anti-commutators of gamma matrices identified as Noether super charges
for the symplectic algebra. After these preliminaries a definition of the Kähler function is proposed
and various physical and mathematical motivations behind the proposed definition are discussed.
The key feature of the Kähler action is classical non-determinism, and various implications of the
classical non-determinism are discussed.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L1].

2 How To Generalize The Construction Of WCW Geometry
To Take Into Account The Classical Non-Determinism?

If the embedding space were H+ = M4
+ × CP2 and if Kähler action were deterministic, the con-

struction of WCW geometry reduces to δM4
+ × CP2. Thus in this limit quantum holography

principle [B3, B7] would be satisfied also in TGD framework and actually reduce to the general
coordinate invariance. The classical non-determinism of Kähler action however means that this
construction is not quite enough and the challenge is to generalize the construction.

2.1 Quantum Holography In The Sense Of Quantum GravityTheories

In string theory context quantum holography is more or less synonymous with Maldacena con-
jecture Maldacena which (very roughly) states that string theory in Anti-de-Sitter space AdS is
equivalent with a conformal field theory at the boundary of AdS. In purely quantum gravitational
context [B3] , quantum holography principle states that quantum gravitational interactions at
high energy limit in AdS can be described using a topological field theory reducing to a conformal
(and non-gravitational) field theory defined at the time like boundary of the AdS. Thus the time
like boundary plays the role of a dynamical hologram containing all information about correlation
functions of d+ 1 dimensional theory. This reduction also conforms with the fact that black hole
entropy is proportional to the horizon area rather than the volume inside horizon.

Holography principle reduces to general coordinate invariance in TGD. If the action principle
assigning space-time surface to a given 3-surface X3 at light cone boundary were completely de-
terministic, four-dimensional general coordinate invariance would reduce the construction of the
configuration geometry for the space of 3-surfaces in M4

+×CP2 to the construction of the geometry
at the boundary of WCW consisting of 3-surfaces in δM4

+ × CP2 (moment of big bang). Also the
quantum theory would reduce to the boundary of the future light cone.

The classical non-determinism of Kähler action however implies that quantum holography in
this strong form fails. This is very desirable from the point of view of both physics and consciousness
theory. Classical determinism would also mean that time would be lost in TGD as it is lost in GRT.
Classical non-determinism is also absolutely essential for quantum consciousness and makes possible
conscious experiences with contents localized into finite time interval despite the fact that quantum
jumps occur between WCW spinor fields defining what I have used to call quantum histories.
Classical non-determinism makes it also possible to generalize quantum-classical correspondence
in the sense that classical non-determinism at the space-time level provides correlate for quantum
non-determinism. The failure of classical determinism is a difficult challenge for the construction
of WCW geometry. One might however hope that the notion of quantum holography generalizes.

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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2.2 How Does The Classical Determinism Fail In TGD?

One might hope that determinism in a generalized sense might be achieved by generalizing the
notion of 3-surface by allowing unions of space-like 3-surfaces with time like separations with
very strong but not complete correlations between the space-like 3-surfaces. In this case the non-
determinism would mean that the 3-surfaces Y 3 at light cone boundary correspond to at most
enumerable number of preferred extremals X4(Y 3) of Kähler action so that one would get finite
or at most enumerably infinite number of replicas of a given WCW region and the construction
would still reduce to the light cone boundary.

1. This is probably quite too simplistic view. Any 4-surface which has CP2 projection which
belongs to so called Lagrange manifold of CP2 having by definition vanishing induced Kähler
form is vacuum extremal. Thus there is an infinite variety of 6-dimensional sub-manifolds of
H for which all extremals of Kähler action are vacua.

2. CP2 type vacuum extremals are different since they possess non-vanishing Kähler form and
Kähler action. They are identifiable as classical counterparts of elementary particles have M4

+

projection which is a random light like curve (this in fact gives rise to conformal invariance
identifiable as counterpart of quaternion conformal invariance). Thus there are good reasons
to suspect that classical non-determinism might destroy the dream about complete reduction
to the light cone boundary.

3. The wormhole contacts connecting different space-time sheets together can be seen as pieces
of CP2 type extremals and one expects that the non-determinism is still there and that the
metrically 2-dimensional elementary particle horizons (light like 3-surfaces of H surrounding
wormhole contacts and having time-like M4

+ projection) might be a crucial element in the
understanding of quantum TGD. The non-determinism of CP2 type extremals is absolutely
crucial for the ordinary elementary particle physics. It seems that the conformal symmetries
responsible for the ordinary elementary particle quantum numbers acting in these degrees of
freedom do not contribute to the WCW metric line element.

The treatment of the non-determinism in a framework in which the prediction of time evolution
is seen as initial value problem, seems to be difficult. Also the notion of WCW becomes a messy
concept. ZEO changes the situation completely. Light-like 3-surfaces become representations of
generalized Feynman diagrams and brings in the notion of finite time resolution. One obtains a
direct connection with the concepts of quantum field theory with path integral with cutoff replaced
with a sum over various preferred extremals with cutoff in time resolution.

2.3 The Notions Of Embedding Space, 3-Surface, And Configuration
Space

The notions of embedding space, 3-surface (and 4-surface), and configuration space (“world of
classical worlds”, WCW) are central to quantum TGD. The original idea was that 3-surfaces are
space-like 3-surfaces of H = M4 × CP2 or H = M4

+ × CP2, and WCW consists of all possible
3-surfaces in H. The basic idea was that the definition of Kähler metric of WCW assigns to
each X3 a unique space-time surface X4(X3) allowing in this manner to realize general coordinate
invariance. During years these notions have however evolved considerably. Therefore it seems
better to begin directly from the recent picture.

2.3.1 The notion of embedding space

Two generalizations of the notion of embedding space were forced by number theoretical vision
[K14, K15, K13] .

1. p-Adicization forced to generalize the notion of embedding space by gluing real and p-adic
variants of embedding space together along rationals and common algebraic numbers. The
generalized embedding space has a book like structure with reals and various p-adic number
fields (including their algebraic extensions) representing the pages of the book.
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2. With the discovery of ZEO [K17, K4] it became clear that the so called causal diamonds (CDs)
interpreted as intersections M4

+ ∩M4
− of future and past directed light-cones of M4 × CP2

define correlates for the quantum states. The position of the “lower” tip of CD characterizes
the position of CD in H. If the temporal distance between upper and lower tip of CD is
quantized power of 2 multiples of CP2 length, p-adic length scale hypothesis [K10] follows as
a consequence. The upper resp. lower light-like boundary δM4

+ × CP2 resp. δM4
− × CP2 of

CD can be regarded as the carrier of positive resp. negative energy part of the state. All net
quantum numbers of states vanish so that everything is creatable from vacuum. Space-time
surfaces assignable to zero energy states would would reside inside CD×CP2s and have their
3-D ends at the light-like boundaries of CD ×CP2. Fractal structure is present in the sense
that CDs can contains CDs within CDs, and measurement resolution dictates the length
scale below which the sub-CDs are not visible.

3. The realization of the hierarchy of Planck constants [K6] led to a further generalization of
the notion of embedding space - at least as a convenient auxialiary structure. Generalized
embedding space is obtained by gluing together Cartesian products of singular coverings
and factor spaces of CD and CP2 to form a book like structure. The particles at different
pages of this book behave like dark matter relative to each other. This generalization also
brings in the geometric correlate for the selection of quantization axes in the sense that the
geometry of the sectors of the generalized embedding space with non-standard value of Planck
constant involves symmetry breaking reducing the isometries to Cartan subalgebra. Roughly
speaking, each CD and CP2 is replaced with a union of CDs and CP2s corresponding to
different choices of quantization axes so that no breaking of Poincare and color symmetries
occurs at the level of entire WCW.

It seems that the covering of embedding space is only a convenient auxiliary structure. The
space-time surfaces in the n-fold covering correspond to the n conformal equivalence classes
of space-time surfaces connecting fixed 3-surfaces at the ends of CD: the space-time surfaces
are branched at their ends. The situation can be interpreted at the level of WCW in several
ways. There is single 3-surface at both ends but by non-determinism there are n space-time
branches of the space-time surface connecting them so that the Kähler action is multiplied
by factor n. If one forgets the presence of the n branches completely, one can say that one
has heff = n × h giving 1/αK = n/αK(n = 1) and scaling ofKähler action. One can also
imagine that the 3-surfaces at the ends of CD are actually surfaces in the n-fold covering
space consisting of n identical copies so that Kähler action is multiplied by n. One could
also include the light-like partonic orbits to the 3-surface so that 3-surfaces would not have
boundaries: in this case the n-fold degeneracy would come out very naturally.

4. The construction of quantum theory at partonic level brings in very important delicacies
related to the Kähler gauge potential of CP2. Kähler gauge potential must have what one
might call pure gauge parts in M4 in order that the theory does not reduce to mere topological
quantum field theory. Hence the strict Cartesian product structure M4 × CP2 breaks down
in a delicate manner. These additional gauge components -present also in CP2- play key role
in the model of anyons, charge fractionization, and quantum Hall effect [K11] .

2.3.2 The notion of 3-surface

The question what one exactly means with 3-surface turned out to be non-trivial.

1. The original identification of 3-surfaces was as arbitrary space-like 3-surfaces subject to
Equivalence implied by General Coordinate Invariance. There was a problem related to the
realization of General Coordinate Invariance since it was not at all obvious why the preferred
extremal X4(Y 3) for Y 3 at X4(X3) and Diff4 related X3 should satisfy X4(Y 3) = X4(X3) .

2. Much later it became clear that light-like 3-surfaces have unique properties for serving as
basic dynamical objects, in particular for realizing the General Coordinate Invariance in 4-D
sense (obviously the identification resolves the above mentioned problem) and understanding
the conformal symmetries of the theory. On basis of these symmetries light-like 3-surfaces
can be regarded as orbits of partonic 2-surfaces so that the theory is locally 2-dimensional.
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It is however important to emphasize that this indeed holds true only locally. At the level
of WCW metric this means that the components of the Kähler form and metric can be
expressed in terms of data assignable to 2-D partonic surfaces and their 4-D tangent spaces.
It is however essential that information about normal space of the 2-surface is needed.

3. At some stage came the realization that light-like 3-surfaces can have singular topology in the
sense that they are analogous to Feynman diagrams. This means that the light-like 3-surfaces
representing lines of Feynman diagram can be glued along their 2-D ends playing the role
of vertices to form what I call generalized Feynman diagrams. The ends of lines are located
at boundaries of sub-CDs. This brings in also a hierarchy of time scales: the increase of the
measurement resolution means introduction of sub-CDs containing sub-Feynman diagrams.
As the resolution is improved, new sub-Feynman diagrams emerge so that effective 2-D
character holds true in discretized sense and in given resolution scale only.

4. A further complication relates to the hierarchy of Planck constants. At “microscopic” level
this means that there number of conformal equivalence classes of space-time surfaces con-
necting the 3-surfaces at boundaries of CD matters and this information is coded by the value
of heff = n × h. One can divide WCW to sectors corresponding to different values of heff
and conformal symmetry breakings connect these sectors: the transition n1 → n2 such that
n1 divides n2 occurs spontaneously since it reduces the quantum criticality by transforming
super-generators acting as gauge symmetries to dynamical ones.

2.3.3 The notion of WCW

From the beginning there was a problem related to the precise definition of WCW (“world of
classical worlds” (WCW)). Should one regard CH as the space of 3-surfaces of M4 × CP2 or
M4

+ × CP2 or perhaps something more delicate.

1. For a long time I believed that the question “M4
+ or M4?” had been settled in favor of M4

+

by the fact that M4
+ has interpretation as empty Roberson-Walker cosmology. The huge

conformal symmetries assignable to δM4
+×CP2 were interpreted as cosmological rather than

laboratory symmetries. The work with the conceptual problems related to the notions of
energy and time, and with the symmetries of quantum TGD, however led gradually to the
realization that there are strong reasons for considering M4 instead of M4

+.

2. With the discovery of ZEO (with motivation coming from the non-determinism of Kähler
action) it became clear that the so called causal diamonds (CDs) define excellent candidates
for the fundamental building blocks of WCW or “world of classical worlds” (WCW). The
spaces CD × CP2 regarded as subsets of H defined the sectors of WCW.

3. This framework allows to realize the huge symmetries of δM4
±×CP2 as isometries of WCW.

The gigantic symmetries associated with the δM4
± × CP2 are also laboratory symmetries.

Poincare invariance fits very elegantly with the two types of super-conformal symmetries of
TGD. The first conformal symmetry corresponds to the light-like surfaces δM4

± × CP2 of
the embedding space representing the upper and lower boundaries of CD. Second conformal
symmetry corresponds to light-like 3-surface X3

l , which can be boundaries of X4 and light-like
surfaces separating space-time regions with different signatures of the induced metric. This
symmetry is identifiable as the counterpart of the Kac Moody symmetry of string models.

A rather plausible conclusion is that WCW (WCW) is a union of WCWs associated with
the spaces CD × CP2. CDs can contain CDs within CDs so that a fractal like hierarchy having
interpretation in terms of measurement resolution results. Since the complications due to p-adic
sectors and hierarchy of Planck constants are not relevant for the basic construction, it reduces to
a high degree to a study of a simple special case δM4

+ × CP2.
A further piece of understanding emerged from the following observations.

1. The induced Kähler form at the partonic 2-surface X2 - the basic dynamical object if holog-
raphy is accepted- can be seen as a fundamental symplectic invariant so that the values of
εαβJαβ at X2 define local symplectic invariants not subject to quantum fluctuations in the
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sense that they would contribute to the WCW metric. Hence only induced metric corre-
sponds to quantum fluctuating degrees of freedom at WCW level and TGD is a genuine
theory of gravitation at this level.

2. WCW can be divided into slices for which the induced Kähler forms of CP2 and δM4
± at the

partonic 2-surfaces X2 at the light-like boundaries of CDs are fixed. The symplectic group
of δM4

± × CP2 parameterizes quantum fluctuating degrees of freedom in given scale (recall
the presence of hierarchy of CDs).

3. This leads to the identification of the coset space structure of the sub-WCW associated with
given CD in terms of the generalized coset construction for super-symplectic and super Kac-
Moody type algebras (symmetries respecting light-likeness of light-like 3-surfaces). WCW in
quantum fluctuating degrees of freedom for given values of zero modes can be regarded as
being obtained by dividing symplectic group with Kac-Moody group. Equivalently, the local
coset space S2×CP2 is in question: this was one of the first ideas about WCW which I gave
up as too näıve!

4. Generalized coset construction and coset space structure have very deep physical meaning
since they realize Equivalence Principle at quantum level. Contrary to the original belief,
this construction does not provide a realization of Equivalence Principle at quantum level.
The proper realization of EP at quantum level seems to be based on the identification of clas-
sical Noether charges in Cartan algebra with the eigenvalues of their quantum counterparts
assignable to Kähler-Dirac action. At classical level EP follows at GRT limit obtained by
lumping many-sheeted space-time to M4 with effective metric satisfying Einstein’s equations
as a reflection of the underlying Poincare invariance.

5. Now it has become clear that EP in the sense of quantum classical correspondence allows
a concrete realization for the fermion lines defined by the light-like boundaries of string
world sheets at light-like orbits of partonic 2-surfaces. Fermion lines are always light-like
or space-like locally. Kähler-Dirac equation reducing to its algebraic counterpart with light-
like 8-momentum defined by the tangent of the boundary curve. 8-D light-likeness means
the possibility of massivation in M4 sense and gravitational mass is defined in an obvious
manner. The M4-part of 8-momentum is by quantum classical correspondence equal to the
4-momentum assignable to the incoming fermion. EP generalizes also to CP2 degrees of
freedom and relates SO(4) acting as symmetries of Eucldian part of 8-momentum to color
SU(3). SO(4) can be assigned to hadrons and SU(3) to quarks and gluons.

The 8-momentum is light-like with respect to the effective metric defined by K-D gamma
matrices. Is it also light-like with respect to the induced metric and proportional to the
tangent vector of the fermion line? If this is not the case, the boundary curve is locally
space-like in the induced metric. Could this relate to the still poorly understand question how
the necessariy tachyonic ground state conformal weight of super-conformal representations
needed in padic mass calculations [K7] emerges? Could it be that ”empty” lines carrying no
fermion number are tachyonic with respect to the induced metric?

2.4 The Treatment Of Non-Determinism Of Kähler Action In Zero En-
ergy Ontology

The non-determinism of Kähler action means that the reduction of the construction of WCW
geometry to the light cone boundary fails. Besides degeneracy of the preferred extrema of Kähler
action, the non-determinism should manifest itself as a presence of causal determinants also other
than light cone boundary.

One can imagine two kinds of causal determinants.

1. Elementary particle horizons and light-like boundaries X3
l ⊂ X4 of 4-surfaces representing

wormhole throats act as causal determinants for the space-time dynamics defined by Kähler
action. The boundary values of this dynamics have been already considered.

2. At embedding space level causal determinants correspond to light like CD forming a fractal
hierarchy of CDs within CDs. These causal determinants determine the dynamics of zero
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energy states having interpretation as pairs of initial and final states in standard quantum
theory.

The manner to treat the classical non-determinism would be roughly following.

1. The replacement of space-like 3-surfaceX3 withX3
l transforms initial value problem forX3 to

a boundary value problem for X3
l . In principle one can also use the surfaces X3 ⊂ δCD×CP2

if X3
l fixes X4(X3

l ) and thus X3 uniquely. For years an important question was whether both
X3 and X3

l contribute separately to WCW geometry or whether they provide descriptions,
which are in some sense dual.

2. Only Super-Kac-Moody type conformal algebra makes sense in the interior of X3
l . In the

2-D intersections of X3
l with the boundary of causal diamond (CD) defined as intersection

of future and past directed light-cones super-symplectic algebra makes sense. This implies
effective two-dimensionality which is broken by the non-determinism represented using the
hierarchy of CDs meaning that the data from these 2-D surfaces and their normal spaces at
boundaries of CDs in various scales determine the WCW metric.

3. An important question has been whether Kac-Moody and super-symplectic algebras provide
descriptions which are dual in some sense. At the level of Super-Virasoro algebras duality
seems to be satisfied in the sense of generalized coset construction meaning that the dif-
ferences of Super Virasoro generators of super-symplectic and super Kac-Moody algebras
annihilate physical states. Among other things this means that four-momenta assignable to
the two Super Virasoro representations are identical. T he interpretation is in terms of a
generalization of Equivalence Principle [K17, K4] . This gives also a justification for p-adic
thermodynamics applying only to Super Kac-Moody algebra.

4. Light-like 3-surfaces can be regarded also as generalized Feynman diagrams. The finite
length resolution mean means also a cutoff in the number of generalized Feynman diagrams
and this number remains always finite if the light-like 3-surfaces identifiable as maxima of
Kähler function correspond to the diagrams. The finiteness of this number is also essential for
number theoretic universality since it guarantees that the elements of M -matrix are algebraic
numbers if momenta and other quantum numbers have this property. The introduction of
new sub-CDs means also introduction of zero energy states in corresponding time scale.

5. The notion of finite measurement resolution expressed in terms of hierarchy of CDs within
CDs is important for the treatment of classical non-determinism. In a given resolution
the non-determinism of Kähler action remains invisible below the time scale assigned to the
smallest CDs. One could also say that complete non-determinism characterized in terms path
integral with cutoff is replaced in TGD framework with the partial failure of classical non-
determinism leading to generalized Feynman diagrams. This gives rise to discrete coupling
constant evolution and avoids the mathematical ill-definedness and infinities plaguing path
integral formalism since the functional integral over 3-surfaces is well defined.

2.5 Category Theory And WCW Geometry

Due the effects caused by the classical non-determinism even classical TGD universes are very
far from simple Cartesian clockworks, and the understanding of the general structure of WCW is
a formidable challenge. Category theory is a branch of mathematics which is basically a theory
about universal aspects of mathematical structures. Thus category theoretical thinking might help
in disentangling the complexities of WCW geometry and the basic ideas of category theory are
discussed in this spirit and as an innocent layman. It indeed turns out that the approach makes
highly non-trivial predictions.

In ZEO the effects of non-determinism are taken into account in terms of causal diamonds
forming a hierarchical fractal structure. One must allow also the unions of CDs, CDs within
CDs, and probably also overlapping of CDs, and there are good reasons to expert that CDs and
corresponding algebraic structures could define categories. If one does not allow overlapping CDs
then set theoretic inclusion map defines a natural arrow. If one allows both unions and intersections
then CDs would form a structure analogous to the set of open sets used in set theoretic topology.
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One could indeed see CDs (or rather their Cartesian products with CP2) as analogs of open sets
in Minkowskian signature.

So called ribbon categories seem to be tailor made for the formulation of quantum TGD and
allow to build bridge to topological and conformal field theories. This discussion based on standard
ontology. In [K2] rather detailed category theoretical constructions are discussed. Important role
is played by the notion of operad operad,operads : this structure can be assigned with both gener-
alized Feynman diagrams and with the hierarchy of symplectic fusion algebras realizing symplectic
analogs of the fusion rules of conformal field theories.

3 Constraints On WCW Geometry

The constraints on WCW (“world of classical worlds”) geometry result both from the infinite
dimension of WCW and from physically motivated symmetry requirements. There are three basic
physical requirements on the WCW geometry: namely four-dimensional Diff invariance, Kähler
property and the decomposition of WCW into a union ∪iG/Hi of symmetric spaces G/Hi, each
coset space allowing G-invariant metric such that G is subgroup of some “universal group” having
natural action on 3-surfaces. Together with the infinite dimensionality of WCW these requirements
pose extremely strong constraints on WCW geometry. In the following these requirements are
considered in more detail.

3.1 WCW

The first näıve view about WCW of TGD was that it consists of all 3-surfaces of M4
+ × CP2

containing sets of

1. surfaces with all possible manifold topologies and arbitrary numbers of components (N-
particle sectors)

2. singular surfaces topologically intermediate between two manifold topologies (see Fig. ??).

The symbol C(H) will be used to denote the set of 3-surfaces X3 ⊂ H. It should be emphasized
that surfaces related by Diff3 transformations will be regarded as different surfaces in the sequel.

Figure 1: Structure of WCW: two-dimensional visualization

These surfaces form a connected(!) space since it is possible to glue various N-particle sectors to
each other along their boundaries consisting of sets of singular surfaces topologically intermediate
between corresponding manifold topologies. The connectedness of the WCW is a necessary pre-
requisite for the description of topology changing particle reactions as continuous paths in WCW
(see Fig. 2).

3.2 Diff4 Invariance And Diff4 Degeneracy

Diff4 plays fundamental role as the gauge group of General Relativity. In string models Diff2

invariance (Diff2 acts on the orbit of the string) plays central role in making possible the elimina-
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Figure 2: Two-dimensional visualization of topological description of particle reactions. a) Gen-
eralization of stringy diagram describing particle decay: 4-surface is smooth manifold and vertex a
non-unique singular 3-manifold, b) Topological description of particle decay in terms of a singular
4-manifold but smooth and unique 3-manifold at vertex. c) Topological origin of Cabibbo mixing.

tion of the time like and longitudinal vibrational degrees of freedom of string. Also in the present
case the elimination of the tachyons (time like oscillatory modes of 3-surface) is a physical necessity
and Diff4 invariance provides an obvious manner to do the job.

In the standard functional integral formulation the realization of Diff4 invariance is an easy task
at the formal level. The problem is however that the path integral over four-surfaces is plagued by
divergences and doesn’t make sense. In the present case the WCW consists of 3-surfaces and only
Diff3 emerges automatically as the group of re-parameterizations of 3-surface. Obviously one
should somehow define the action of Diff4 in the space of 3-surfaces. Whatever the action of Diff4

is it must leave the WCW metric invariant. Furthermore, the elimination of tachyons is expected
to be possible only provided the time like deformations of the 3-surface correspond to zero norm
vector fields of WCW so that 3-surface and its Diff4 image have zero distance. The conclusion is
that WCW metric should be both Diff4 invariant and Diff4 degenerate.

The problem is how to define the action of Diff4 in C(H). Obviously the only manner to achieve
Diff4 invariance is to require that the very definition of the WCW metric somehow associates a
unique space-time surface to a given 3-surface for Diff4 to act on! The obvious physical interpre-
tation of this space time surface is as “classical space time” so that “Classical Physics” would be
contained in WCW geometry. It is this requirement, which has turned out to be decisive con-
cerning the understanding of the configuration space geometry. Amusingly enough, the historical
development was not this: the definition of Diff4 degenerate Kähler metric was found by a guess
and only later it was realized that Diff4 invariance and degeneracy could have been postulated
from beginning!

3.3 Decomposition Of WCW Into A Union Of Symmetric Spaces G/H

The extremely beautiful theory of finite-dimensional symmetric spaces constructed by Elie Cartan
suggests that WCW should possess a decomposition into a union of coset spaces CH = ∪iG/Hi

such that the metric inside each coset space G/Hi is left invariant under the infinite dimensional
isometry group G. The metric equivalence of surfaces inside each coset space G/Hi does not mean
that 3-surfaces inside G/Hi are physically equivalent. The reason is that the vacuum functional is
exponent of Kähler action which is not isometry invariant so that the 3-surfaces, which correspond
to maxima of Kähler function for a given orbit, are in a preferred position physically. For instance,
one can calculate functional integral around this maximum perturbatively. The sum of over i means
actually integration over the zero modes of the metric (zero modes correspond to coordinates not
appearing as coordinate differentials in the metric tensor).

The coset space G/H is a symmetric space only under very special Lie-algebraic conditions.
Denoting the Cartan decomposition of the Lie-algebra g of G to the direct sum of H Lie-algebra
h and its complement t by g = h⊕ t, one has

[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .
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This decomposition turn out to play crucial role in guaranteeing that G indeed acts as isometries
and that the metric is Ricci flat.

The four-dimensional Diff invariance indeed suggests to a beautiful solution of the problem of
identifying G. The point is that any 3-surface X3 is Diff4 equivalent to the intersection of X4(X3)
with the light cone boundary. This in turn implies that 3-surfaces in the space δH = δM4

+ × CP2

should be all what is needed to construct WCW geometry. The group G can be identified as some
subgroup of diffeomorphisms of δH and Hi diffeomorphisms of the 3-surface X3. Since G preserves
topology, WCW must decompose into union ∪iG/Hi, where i labels 3-topologies and various zero
modes of the metric. For instance, the elements of the Lie-algebra of G invariant under WCW
complexification correspond to zero modes.

The reduction to the light cone boundary, identifiable as the moment of big bang, looks perhaps
odd at first. In fact, it turns out that the classical non-determinism of Kähler action forces does
not allow the complete reduction to the light cone boundary: physically this is a highly desirable
implication but means a considerable mathematical challenge.

Kähler property implies that the tangent space of the configuration space allows complexi-
fication and that there exists a covariantly constant two-form Jkl, which can be regarded as a
representation of the imaginary unit in the tangent space of the WCW:

J r
k Jrl = −Gkl . (3.1)

There are several physical and mathematical reasons suggesting that WCW metric should possess
Kähler property in some generalized sense.

1. Kähler property turns out to be a necessary prerequisite for defining divergence free WCW
integration. We will leave the demonstration of this fact later although the argument as such
is completely general.

2. Kähler property very probably implies an infinite-dimensional isometry Freed shows that
loop group allows only single Kähler metric with well Riemann connection and this metric
allows local G as its isometries!

To see this consider the construction of Riemannian connection for Map(X3, H). The defin-
ing formula for the connection is given by the expression

2(∇XY,Z) = X(Y,Z) + Y (Z,X)− Z(X,Y )

+ ([X,Y ], Z) + ([Z,X], Y )− ([Y,Z], X) (3.2)

X,Y, Z are smooth vector fields in Map(X3, G). This formula defines ∇XY uniquely pro-
vided the tangent space of Map is complete with respect to Riemann metric. In the finite-
dimensional case completeness means that the inverse of the covariant metric tensor exists
so that one can solve the components of connection from the conditions stating the covariant
constancy of the metric. In the case of the loop spaces with Kähler metric this is however
not the case.

Now the symmetry comes into the game: if X,Y, Z are left (local gauge) invariant vector
fields defined by the Lie-algebra of local G then the first three terms drop away since the
scalar products of left invariant vector fields are constants. The expression for the covariant
derivative is given by

∇XY = (AdXY −Ad∗XY −Ad∗YX)/2 (3.3)

where Ad∗X is the adjoint of AdX with respect to the metric of the loop space.

At this point it is important to realize that Freed’s argument does not force the isometry
group of WCW to be Map(X3,M4 × SU(3))! Any symmetry group, whose Lie algebra is
complete with respect to the WCW metric ( in the sense that any tangent space vector is
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expressible as superposition of isometry generators modulo a zero norm tangent vector) is an
acceptable alternative.

The Kähler property of the metric is quite essential in one-dimensional case in that it leads to
the requirement of left invariance as a mathematical consistency condition and we expect that
dimension three makes no exception in this respect. In 3-dimensional case the degeneracy of
the metric turns out to be even larger than in 1-dimensional case due to the four-dimensional
Diff degeneracy. So we expect that the metric ought to possess some infinite-dimensional
isometry group and that the above formula generalizes also to the 3-dimensional case and to
the case of local coset space. Note that in M4 degrees of freedom Map(X3,M4) invariance
would imply the flatness of the metric in M4 degrees of freedom.

The physical implications of the above purely mathematical conjecture should not be under-
estimated. For example, one natural looking manner to construct physical theory would be
based on the idea that WCW geometry is dynamical and this approach is followed in the
attempts to construct string theories [B2] . Various physical considerations (in particular the
need to obtain oscillator operator algebra) seem to imply that WCW geometry is necessarily
Kähler. The above result however states that WCW Kähler geometry cannot be dynamical
quantity and is dictated solely by the requirement of internal consistency. This result is
extremely nice since it has been already found that the definition of the WCW metric must
somehow associate a unique classical space time and “classical physics” to a given 3-surface:
uniqueness of the geometry implies the uniqueness of the “classical physics”.

3. The choice of the embedding space becomes highly unique. In fact, the requirement that
WCW is not only symmetric space but also (contact) Kähler manifold inheriting its (degen-
erate) Kähler structure from the embedding space suggests that spaces, which are products
of four-dimensional Minkowski space with complex projective spaces CPn, are perhaps the
only possible candidates for H. The reason for the unique position of the four-dimensional
Minkowski space turns out to be that the boundary of the light cone of D-dimensional
Minkowski space is metrically a sphere SD−2 despite its topological dimension D − 1: for
D = 4 one obtains two-sphere allowing Kähler structure and infinite parameter group of
conformal symmetries!

4. It seems possible to understand the basic mathematical structures appearing in string model
in terms of the Kähler geometry rather nicely.

(a) The projective representations of the infinite-dimensional isometry group (not neces-
sarily Map!) correspond to the ordinary representations of the corresponding centrally
extended group [A6]. The representations of Kac Moody group Schwartz,Green and
WCW approach would explain their occurrence, not as a result of some quantization
procedure, but as a consequence of symmetry of the underlying geometric structure.

(b) The bosonic oscillator operators of string models would correspond to centrally extended
Lie-algebra generators of the isometry group acting on spinor fields of the WCW.

(c) The “fermionic” fields ( Ramond fields, Schwartz,Green ) should correspond to gamma
matrices of the WCW. Fermionic oscillator operators would correspond simply to con-
tractions of isometry generators jkA with complexified gamma matrices of WCW

Γ±A = jkAΓ±k

Γ±k = (Γk ± JklΓl)/
√

2 (3.4)

(Jkl is the Kähler form of WCW) and would create various spin excitations of WCW
spinor field. Γ±k are the complexified gamma matrices, complexification made possible
by the Kähler structure of the WCW.

This suggests that some generalization of the so called Super Kac Moody algebra of string
models [B6, B5] should be regarded as a spectrum generating algebra for the solutions of field
equations in configuration space.
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Although the Kähler structure seems to be physically well motivated there is a rather heavy
counter argument against the whole idea. Kähler structure necessitates complex structure in the
tangent space of WCW. In CP2 degrees of freedom no obvious problems of principle are expected:
WCW should inherit in some sense the complex structure of CP2.

In Minkowski degrees of freedom the signature of the Minkowski metric seems to pose a serious
obstacle for complexification: somehow one should get rid of two degrees of freedom so that only
two Euclidian degrees of freedom remain. An analogous difficulty is encountered in quantum field
theories: only two of the four possible polarizations of gauge boson correspond to physical degrees
of freedom: mathematically the wrong polarizations correspond to zero norm states and transverse
Hilbert space with Euclidian metric. Also in string model analogous situation occurs: in case
of D-dimensional Minkowski space only D − 2 transversal degrees of freedom are physical. The
solution to the problem seems therefore obvious: WCW metric must be degenerate so that each
vibrational mode spans effectively a 2-dimensional Euclidian plane allowing complexification.

It will be found that the definition of Kähler function to be proposed indeed provides a solution
to this problem and also to the problems listed before.

1. The definition of the metric doesn’t differentiate between 1- and N-particle sectors, avoids spin
statistics difficulty and has the physically appealing property that one can associate to each 3-
surface a unique classical space time: classical physics is described by the geometry of WCW!
And the geometry of WCW is determined uniquely by the requirement of mathematical
consistency.

2. Complexification is possible only provided the dimension of the Minkowski space equals to
four.

3. It is possible to identify a unique candidate for the necessary infinite-dimensional isometry
group G. G is subgroup of the diffeomorphism group of δM4

± × CP2. Essential role is
played by the fact that the boundary of the four-dimensional light cone, which, despite
being topologically 3-dimensional, is metrically two-dimensional(!) Euclidian sphere, and
therefore allows infinite-parameter groups of isometries as well as conformal and symplectic
symmetries and also Kähler structure unlike the higher-dimensional light cone boundaries.
Therefore WCW metric is Kähler only in the case of four-dimensional Minkowski space and
allows symplectic U(1) central extension without conflict with the no-go theorems about
higher dimensional central extensions.

The study of the vacuum degeneracy of Kähler function defined by Kähler action forces to
conclude that the isometry group must consist of the symplectic transformations of δH =
δM4
± × CP2. The corresponding Lie algebra can be regarded as a loop algebra associated

with the symplectic group of S2 × CP2, where S2 is rM = constant sphere of light cone
boundary. Thus the finite-dimensional group G defining loop group in case of string models
extends to an infinite-dimensional group in TGD context. This group is a real monster! The
radial Virasoro localized with respect to S2×CP2 defines naturally complexification for both
G and H. The general form of the Kähler metric deduced on basis of this symmetry has
same qualitative properties as that deduced from Kähler function identified as the absolute
minimum of Kähler action. Also the zero modes, among them isometry invariants, can be
identified.

4. The construction of the WCW spinor structure is based on the identification of the WCW
gamma matrices as linear superpositions of the oscillator operators associated with the in-
duced spinor fields. The extension of the symplectic invariance to super symplectic invariance
fixes the anti-commutation relations of the induced spinor fields, and WCW gamma matri-
ces correspond directly to the super generators. Physics as number theory vision suggests
strongly that WCW geometry exists for 8-dimensional embedding space only and that the
choice M4

+ × CP2 for the embedding space is the only possible one.

4 Kähler Function

There are two approaches to the construction of WCW geometry: a direct physics based guess
of the Kähler function and a group theoretic approach based on the hypothesis that CH can be
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regarded as a union of symmetric spaces. The rest of this chapter is devoted to the first approach.

4.1 Definition Of Kähler Function

4.1.1 Kähler metric in terms of Kähler function

Quite generally, Kähler function K defines Kähler metric in complex coordinates via the following
formula

Jkl = igkl = i∂k∂lK . (4.1)

Kähler function is defined only modulo a real part of holomorphic function so that one has the
gauge symmetry

K → K + f + f . (4.2)

Let X3 be a given 3-surface and let X4 be any four-surface containing X3 as a sub-manifold:
X4 ⊃ X3. The 4-surface X4 possesses in general boundary. If the 3-surface X3 has nonempty
boundary δX3 then the boundary of X3 belongs to the boundary of X4: δX3 ⊂ δX4.

4.1.2 Induced Kähler form and its physical interpretation

Induced Kähler form defines a Maxwell field and it is important to characterize precisely its rela-
tionship to the gauge fields as they are defined in gauge theories. Kähler form J is related to the
corresponding Maxwell field F via the formula

J = xF , x =
gK
~

. (4.3)

Similar relationship holds true also for the other induced gauge fields. The inverse proportionality
of J to ~ does not matter in the ordinary gauge theory context where one routinely choses units by
putting ~ = 1 but becomes very important when one considers a hierarchy of Planck constants [K6].

Unless one has J = (gK/~0), where ~0 corresponds to the ordinary value of Planck constant,
αK = g2

K/4π~ together the large Planck constant means weaker interactions and convergence
of the functional integral defined by the exponent of Kähler function and one can argue that
the convergence of the functional integral is what forces the hierarchy of Planck constants. This
is in accordance with the vision that Mother Nature likes theoreticians and takes care that the
perturbation theory works by making a phase transition increasing the value of the Planck constant
in the situation when perturbation theory fails. This leads to a replacement of the M4 (or more
precisely, causal diamond CD) and CP2 factors of the embedding space (CD × CP2) with its
r = heff/h-fold singular covering (one can consider also singular factor spaces). If the components
of the space-time surfaces at the sheets of the covering are identical, one can interpret r-fold value
of Kähler action as a sum of r identical contributions from the sheets of the covering with ordinary
value of Planck constant and forget the presence of the covering. Physical states are however
different even in the case that one assumes that sheets carry identical quantum states and anyonic
phase could correspond to this kind of phase [K11].

4.1.3 Kähler action

One can associate to Kähler form Maxwell action and also Chern-Simons anomaly term propor-
tional to

∫
X4 J ∧ J in well known manner. Chern Simons term is purely topological term and well

defined for orientable 4-manifolds, only. Since there is no deep reason for excluding non-orientable
space-time surfaces it seems reasonable to drop Chern Simons term from consideration. Therefore
Kähler action SK(X4) can be defined as

SK(X4) = k1

∫
X4;X3⊂X4

J ∧ (∗J) . (4.4)
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The sign of the square root of the metric determinant, appearing implicitly in the formula, is
defined in such a way that the action density is negative for the Euclidian signature of the induced
metric and such that for a Minkowskian signature of the induced metric Kähler electric field gives
a negative contribution to the action density.

The notational convention

k1 ≡ 1

16παK
, (4.5)

where αK will be referred as Kähler coupling strength will be used in the sequel. If the preferred
extremals minimize/maximize [K15] the absolute value of the action in each region where action
density has a definite sign, the value of αK can depend on space-time sheet.

4.1.4 Kähler function

One can define the Kähler function in the following manner. Consider first the case H = M4
+×CP2

and neglect for a moment the non-determinism of Kähler action. Let X3 be a 3-surface at the
light-cone boundary δM4

+ × CP2. Define the value K(X3) of Kähler function K as the value
of the Kähler action for some preferred extremal in the set of four-surfaces containing X3 as a
sub-manifold:

K(X3) = K(X4
pref ) , X4

pref ⊂ {X4|X3 ⊂ X4} . (4.6)

The most plausible identification of preferred extremals is in terms of quantum criticality in the
sense that the preferred extremals allow an infinite number of deformations for which the second
variation of Kähler action vanishes. Combined with the weak form of electric-magnetic duality
forcing appearance of Kähler coupling strength in the boundary conditions at partonic 2-surfaces
this condition might be enough to fix preferred extremals completely.

The precise formulation of Quantum TGD has developed rather slowly. Only quite recently-
33 years after the birth of TGD - I have been forced to reconsider the question whether the precise
identification of Kähler function. Should Kähler function actually correspond to the Kähler action
for the space-time regions with Euclidian signature having interpretation as generalized Feynman
graphs? If so what would be the interpretation for the Minkowskian contribution?

1. If one accepts just the formal definition for the square root of the metric determinant,
Minkowskian regions would naturally give an imaginary contribution to the exponent defining
the vacuum functional. The presence of the phase factor would give a close connection with
the path integral approach of quantum field theories and the exponent of Kähler function
would make the functional integral well-defined.

2. The weak form of electric magnetic duality would reduce the contributions to Chern-Simons
terms from opposite sides of wormhole throats with degenerate four-metric with a constraint
term guaranteeing the duality.

The motivation for this reconsideration came from the applications of ideas of Floer homology
to TGD framework [K8]: the Minkowskian contribution to Kähler action for preferred extremals
would define Morse function providing information about WCW homology. Both Kähler and Morse
would find place in TGD based world order.

One of the nasty questions about the interpretation of Kähler action relates to the square root
of the metric determinant. If one proceeds completely straightforwardly, the only reason conclusion
is that the square root is imaginary in Minkowskian space-time regions so that Kähler action would
be complex. The Euclidian contribution would have a natural interpretation as positive definite
Kähler function but how should one interpret the imaginary Minkowskian contribution? Certainly
the path integral approach to quantum field theories supports its presence. For some mysterious
reason I was able to forget this nasty question and serious consideration of the obvious answer
to it. Only when I worked between possibile connections between TGD and Floer homology [K8]
I realized that the Minkowskian contribution is an excellent candidate for Morse function whose
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critical points give information about WCW homology. This would fit nicely with the vision about
TGD as almost topological QFT.

Euclidian regions would guarantee the convergence of the functional integral and one would
have a mathematically well-defined theory. Minkowskian contribution would give the quantal
interference effects and stationary phase approximation. The analog of Floer homology would
represent quantum superpositions of critical points identifiable as ground states defined by the
extrema of Kähler action for Minkowskian regions. Perturbative approach to quantum TGD would
rely on functional integrals around the extrema of Kähler function. One would have maxima also
for the Kähler function but only in the zero modes not contributing to the WCW metric.

There is a further question related to almost topological QFT character of TGD. Should
one assume that the reduction to Chern-Simons terms occurs for the preferred extremals in both
Minkowskian and Euclidian regions or only in Minkowskian regions?

1. All arguments for this have been represented for Minkowskian regions [K17] involve local
light-like momentum direction which does not make sense in the Euclidian regions. This does
not however kill the argument: one can have non-trivial solutions of Laplacian equation in the
region of CP2 bounded by wormhole throats: for CP2 itself only covariantly constant right-
handed neutrino represents this kind of solution and at the same time supersymmetry. In the
general case solutions of Laplacian represent broken super-symmetries and should be in one-
one correspondences with the solutions of the Kähler-Dirac equation. The interpretation for
the counterparts of momentum and polarization would be in terms of classical representation
of color quantum numbers.

2. If the reduction occurs in Euclidian regions, it gives in the case of CP2 two 3-D terms corre-
sponding to two 3-D gluing regions for three coordinate patches needed to define coordinates
and spinor connection for CP2 so that one would have two Chern-Simons terms. I have ear-
lier claimed that without any other contributions the first term would be identical with that
from Minkowskian region apart from imaginary unit and different coefficient. This statement
is wrong since the space-like parts of the corresponding 3-surfaces are discjoint for Euclidian
and Minkowskian regions.

3. There is also an argument stating that Dirac determinant for Chern-Simons Dirac action
equals to Kähler function, which would be lost if Euclidian regions would not obey holography.
The argument obviously generalizes and applies to both Morse and Kähler function which
are definitely not proportional to each other.

4.1.5 CP breaking and ground state degeneracy

The Minkowskian contribution of Kähler action is imaginary due to the negativity of the met-
ric determinant and gives a phase factor to vacuum functional reducing to Chern-Simons terms
at wormhole throats. Ground state degeneracy due to the possibility of having both signs for
Minkowskian contribution to the exponent of vacuum functional provides a general view about the
description of CP breaking in TGD framework.

1. In TGD framework path integral is replaced by inner product involving integral over WCV.
The vacuum functional and its conjugate are associated with the states in the inner product
so that the phases of vacuum functionals cancel if only one sign for the phase is allowed.
Minkowskian contribution would have no physical significance. This of course cannot be
the case. The ground state is actually degenerate corresponding to the phase factor and
its complex conjugate since

√
g can have two signs in Minkowskian regions. Therefore the

inner products between states associated with the two ground states define 2× 2 matrix and
non-diagonal elements contain interference terms due to the presence of the phase factor. At
the limit of full CP2 type vacuum extremal the two ground states would reduce to each other
and the determinant of the matrix would vanish.

2. A small mixing of the two ground states would give rise to CP breaking and the first principle
description of CP breaking in systems like K − K and of CKM matrix should reduce to
this mixing. K0 mesons would be CP even and odd states in the first approximation and
correspond to the sum and difference of the ground states. Small mixing would be present
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having exponential sensitivity to the actions of CP2 type extremals representing wormhole
throats. This might allow to understand qualitatively why the mixing is about 50 times
larger than expected for B0 mesons.

3. There is a strong temptation to assign the two ground states with two possible arrows of geo-
metric time. At the level of M-matrix the two arrows would correspond to state preparation
at either upper or lower boundary of CD. Do long- and shortlived neutral K mesons corre-
spond to almost fifty-fifty orthogonal superpositions for the two arrow of geometric time or
almost completely to a fixed arrow of time induced by environment? Is the dominant part of
the arrow same for both or is it opposite for long and short-lived neutral measons? Different
lifetimes would suggest that the arrow must be the same and apart from small leakage that
induced by environment. CP breaking would be induced by the fact that CP is performed
only K0 but not for the environment in the construction of states. One can probably imagine
also alternative interpretations.

4.2 The Values Of The Kähler Coupling Strength?

Since the vacuum functional of the theory turns out to be essentially the exponent exp(K) of the
Kähler function, the dynamics depends on the normalization of the Kähler function. Since the
Theory of Everything should be unique it would be highly desirable to find arguments fixing the
normalization or equivalently the possible values of the Kähler coupling strength αK .

4.2.1 Quantization of αK follow from Dirac quantization in WCW?

The quantization of Kähler form of WCW could result in the following manner. It will be found
that Abelian extension of the isometry group results by coupling spinors of WCW to a multiple of
Kähler potential. This means that Kähler potential plays role of gauge connection so that Kähler
form must be integer valued by Dirac quantization condition for magnetic charge. So, if Kähler
form is co-homologically nontrivial the value of αK is quantized.

4.2.2 Quantization from criticality of TGD Universe?

Mathematically αK is analogous to temperature and this suggests that αK is analogous to critical
temperature and therefore quantized. This analogy suggests also a physical motivation for the
unique value or value spectrum of αK . Below the critical temperature critical systems suffer
something analogous to spontaneous magnetization. At the critical point critical systems are
characterized by long range correlations and arbitrarily large volumes of magnetized and non-
magnetized phases are present. Spontaneous magnetization might correspond to the generation of
Kähler magnetic fields: the most probable 3-surfaces are Kähler magnetized for subcritical values
of αK . At the critical values of αK the most probable 3-surfaces contain regions dominated by
either Kähler electric and or Kähler magnetic fields: by the compactness of CP2 these regions have
in general outer boundaries.

This suggests that 3-space has hierarchical, fractal like structure: 3-surfaces with all sizes (and
with outer boundaries) are possible and they have suffered topological condensation on each other.
Therefore the critical value of αK allows the richest possible topological structure for the most
probable 3-space. In fact, this hierarchical structure is in accordance with the basic ideas about
renormalization group invariance. This hypothesis has highly nontrivial consequences even at the
level of ordinary condensed matter physics.

Unfortunately, the exact definition of renormalization group concept is not at all obvious. There
is however a much more general but more or less equivalent manner to formulate the condition
fixing the value of αK . Vacuum functional exp(K) is analogous to the exponent exp(−H/T ) ap-
pearing in the definition of the partition function of a statistical system and S-matrix elements and
other interesting physical quantities are integrals of type 〈O〉 =

∫
exp(K)O

√
GdV and therefore

analogous to the thermal averages of various observables. αK is completely analogous to tempera-
ture. The critical points of a statistical system correspond to critical temperatures Tc for which the
partition function is non-analytic function of T−Tc and according RGE hypothesis critical systems
correspond to fixed points of renormalization group evolution. Therefore, a mathematically more
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precise manner to fix the value of αK is to require that some integrals of type 〈O〉 (not necessary
S-matrix elements) become non-analytic at 1/αK − 1/αcK .

Renormalization group invariance is closely related with criticality. The self duality of the
Kähler form and Weyl tensor of CP2 indeed suggest RG invariance. The point is that in N = 1
super-symmetric field theories duality transformation relates the strong coupling limit for ordinary
particles with the weak coupling limit for magnetic monopoles and vice versa. If the theory is
self dual these limits must be identical so that action and coupling strength must be RG invariant
quantities. The geometric realization of the duality transformation is easy to guess in the standard
complex coordinates ξ1, ξ2 of CP2 (see Appendix of the book). In these coordinates the metric and
Kähler form are invariant under the permutation ξ1 ↔ ξ2 having Jacobian −1.

Consistency requires that the fundamental particles of the theory are equivalent with magnetic
monopoles. The deformations of so called CP2 type vacuum extremals indeed serve as building
bricks of a elementary particles. The vacuum extremals are are isometric embeddings of CP2 and
can be regarded as monopoles. Elementary particle corresponds to a pair of wormhole contacts
and monopole flux runs between the throats of of the two contacts at the two space-time sheets
and through the contacts between space-time sheets. The magnetic flux however flows in internal
degrees of freedom (possible by nontrivial homology of CP2) so that no long range 1/r2 magnetic
field is created. The magnetic contribution to Kähler action is positive and this suggests that
ordinary magnetic monopoles are not stable, since they do not minimize Kähler action: a cautious
conclusion in accordance with the experimental evidence is that TGD does not predict magnetic
monopoles. It must be emphasized that the prediction of monopoles of practically all gauge theories
and string theories and follows from the existence of a conserved electromagnetic charge.

4.2.3 Does αK have spectrum?

The assumption about single critical value of αK is probably too strong.

1. The hierarchy of Planck constants which would result from non-determinism of Kähler action
implying n conformal equivalences of space-time surface connecting 3-surfaces at the bound-
aries of causal diamond CD would predict effective spectrum of αK as αK = g2

K/4π~eff ,
~eff/h = n. The analogs of critical temperatures would have accumulation point at zero
temperature.

2. p-Adic length scale hierarchy together with the immense vacuum degeneracy of the Kähler
action leads to ask whether different p-adic length scales correspond to different critical values
of αK , and that ordinary coupling constant evolution is replaced by a piecewise constant
evolution induced by that for αK .

4.3 What Conditions Characterize The Preferred Extremals?

The basic vision forced by the generalization of General Coordinate Invariance has been that space-
time surfaces correspond to preferred extremals X4(X3) of Kähler action and are thus analogous to
Bohr orbits. Kähler function K(X3) defining the Kähler geometry of the world of classical worlds
would correspond to the Kähler action for the preferred extremal. The precise identification of the
preferred extremals actually has however remained open.

In positive energy ontology space-time surfaces should be analogous to Bohr orbits in order
to make possible possible realization of general coordinate invariance. The first guess was that
absolute minimization of Kähler action might be the principle selecting preferred extremals. One
can criticize the assumption that extremals correspond to the absolute minima of Kähler action
for entire space-time surface as too strong since the Kähler action from Minkowskian regions is
proportional to imaginary unit and corresponds to ordinary QFT action defining a phase factor
of vacuum functional. Absolute minimization could however make sense for Euclidian space-time
regions defining the lines of generalized Feynman diagras, where Kähler action has definite sign.
Kähler function is indeed the Kähler action for these regions. Furthermore, the notion of absolute
minimization does not make sense in p-adic context unless one manages to reduce it to purely
algebraic conditions.
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4.3.1 Is preferred extremal property needed at all in ZEO?

It is good to start with a critical question. Could it be that the notion of preferred extremal
might be un-necessary in ZEO (ZEO)? The reason is that 3-surfaces are now pairs of 3-surfaces at
boundaries of causal diamonds and for deterministic dynamics the space-time surface connecting
them is unique.

Now the action principle is non-deterministic but the non-determinism would give rise to ad-
ditional discrete dynamical degrees of freedom naturally assignable to the hierarchy of Planck
constants heff = n× h, n the number of space-time surface with same fixed ends at boundaries of
CD and same Kähler action and same conserved quantities. One must be however cautious: this
leaves the possibility that there is a gauge symmetry present so that the n sheets correspond to
gauge equivalence classes of sheets. Conformal gauge invariance is associated with 2-D criticality
and is expected to be present also now. and this is the recent view.

One can of course ask whether one can assume that the pairs of 3-surfaces at the ends of CD are
totally un-correlated - this the starting point in ZEO. If this assumption is not made then preferred
extremal property would make sense also in ZEO and imply additional correlation between the
members of these pairs. This kind of correlations might be present and correspond to the Bohr
orbit property, space-time correlate for quantum states. This kind of correlates are also expected
as space-time counterpart for the correlations between initial and final state in quantum dynamics.
This indeed seems to be the correct conclusion.

4.3.2 How to identify preferred extremals?

What is needed is the association of a unique space-time surface to a given 3-surface defined as
union of 3-surfaces at opposite boundaries of CD. One can imagine many ways to achieve this.
“Unique” is too much to demand: for the proposal unique space-time surface is replaced with finite
number of conformal gauge equivalence classes of space-time surfaces. In any case, it is better to
talk just about preferred extremals of Kähler action and accept as the fact that there are several
proposals for what this notion could mean.

1. For instance, one can consider the identification of space-time surface as associative (co-
associative) sub-manifold meaning that tangent space of space-time surface can be regarded
as associative (co-associative) sub-manifold of complexified octonions defining tangent space
of embedding space. One manner to define “associative sub-manifold” is by introducing
octonionic representation of embedding space gamma matrices identified as tangent space
vectors. It must be also assumed that the tangent space contains a preferred commutative
(co-commutative) sub-space at each point and defining an integrable distribution having
identification as string world sheet (also slicing of space-time sheet by string world sheets can
be considered). Associativity and commutativity would define the basic dynamical principle.
A closely related approach is based on so called Hamilton-Jacobi structure [K1] defining also
this kind of slicing and the approaches could be equivalent.

2. In ZEO 3-surfaces become pairs of space-like 3-surfaces at the boundaries of causal diamond
(CD). Even the light-like partonic orbits could be included to give the analog of Wilson loop.
In absence of non-determinism of Kähler action this forces to ask whether the attribute
“preferred” is un-necessary. There are however excellent reasons to expect that there is
an infinite gauge degeneracy assignable to quantum criticality and represented in terms of
Kac-Moody type transformations of partonic orbits respecting their light-likeness and giving
rise to the degeneracy behind hierarchy of Planck constants heff = n × h. n would give
the number of conformal equivalence classes of space-time surfaces with same ends. In given
measurement resolution one might however hope that the “preferred” could be dropped away.

The vanishing of Noether charges for sub-algebras of conformal algebras with conformal
weights coming as multiples of n at the ends of space-time surface would be a concrete
realization of this picture and looks the most feasible option at this moment since it is direct
classical correlated for broken super-conformal gauge invariance at quantum level.

3. The construction of quantum TGD in terms of the Kähler-Dirac action associated with Kähler
action suggested a possible answer to the question about the principle selecting preferred
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extremals. The Noether currents associated with Kähler-Dirac action are conserved if second
variations of Kähler action vanish. This is nothing but space-time correlate for quantum
criticality and it is amusing that I failed to realize this for so long time. A further very
important result is that in generic case the modes of induced spinor field are localized at 2-D
surfaces from the condition that em charge is well-defined quantum number (W fields must
vanish and also Z0 field above weak scale in order to avoid large parity breaking effects).

The localization at string world sheets means that quantum criticality as definition of “pre-
ferred” works only if there selection of string world sheets, partonic 2-surfaces, and their
light-like orbits fixes the space-time surface completely. The generalization of AdS/CFT
correspondence (or strong form of holography) suggests that this is indeed the case. The
criticality conditions are however rather complicated and it seems that the vanishing of the
symplectic Noether charges is the practical manner to formulate what “preferred” does mean.

5 Construction Of WCW Geometry From Symmetry Prin-
ciples

Besides the direct guess of Kähler function one can also try to construct WCW geometry using
symmetry principles. The mere existence of WCW geometry as a union of symmetric spaces
requires maximal possible symmetries and means a reduction to single point of WCW with fixed
values of zero modes. Therefore there are good hopes that the construction might work in practice.

5.1 General Coordinate Invariance And Generalized Quantum Gravita-
tional Holography

The basic motivation for the construction of WCW geometry is the vision that physics reduces
to the geometry of classical spinor fields in the infinite-dimensional WCW of 3-surfaces of M4

+ ×
CP2 or of M4 × CP2. Hermitian conjugation is the basic operation in quantum theory and its
geometrization requires that WCW possesses Kähler geometry. Kähler geometry is coded into
Kähler function.

The original belief was that the four-dimensional general coordinate invariance of Kähler func-
tion reduces the construction of the geometry to that for the boundary of configuration space
consisting of 3-surfaces on δM4

+ × CP2, the moment of big bang. The proposal was that Kähler
function K(Y 3) could be defined as a preferred extremal of so called Kähler action for the unique
space-time surface X4(Y 3) going through given 3-surface Y 3 at δM4

+ ×CP2. For Diff4 transforms
of Y 3 at X4(Y 3) Kähler function would have the same value so that Diff4 invariance and degener-
acy would be the outcome. The proposal was that the preferred extremal is absolute minimum of
Kähler action.

This picture turned out to be too simple.

1. Absolute minima had to be replaced by preferred extremals containing M2 in the tangent
space of X4 at light-like 3-surfaces X3

l . The reduction to the light-cone boundary which in
fact corresponds to what has become known as quantum gravitational holography must be
replaced with a construction involving light-like boundaries of causal diamonds CD already
described.

2. It has also become obvious that the gigantic symmetries associated with δM4
± × CP2 ⊂

CD × CP2 manifest themselves as the properties of propagators and vertices. Cosmological
considerations, Poincare invariance, and the new view about energy favor the decomposition
of WCW to a union of configuration spaces assignable to causal diamonds CDs defined as
intersections of future and past directed light-cones. The minimum assumption is that CDs
label the sectors of CH: the nice feature of this option is that the considerations of this
chapter restricted to δM4

+×CP2 generalize almost trivially. This option is beautiful because
the center of mass degrees of freedom associated with the different sectors of CH would
correspond to M4 itself and its Cartesian powers.

The definition of the Kähler function requires that the many-to-one correspondence X3 →
X4(X3) must be replaced by a bijective correspondence in the sense that X3 as light-like 3-surface
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is unique among all its Diff4 translates. This also allows physically preferred “gauge fixing” allowing
to get rid of the mathematical complications due to Diff4 degeneracy. The internal geometry of
the space-time sheet X4(X3) must define the preferred 3-surface X3.

The realization of this vision means a considerable mathematical challenge. The effective metric
2-dimensionality of 3-dimensional light-like surfaces X3

l of M4 implies generalized conformal and
symplectic invariances allowing to generalize quantum gravitational holography from light like
boundary so that the complexities due to the non-determinism can be taken into account properly.

5.2 Light-Like 3-D Causal Determinants And Effective 2-Dimensionality

The light like 3-surfaces X3
l of space-time surface appear as 3-D causal determinants. Examples are

boundaries and elementary particle horizons at which Minkowskian signature of the induced metric
transforms to Euclidian one. This brings in a second conformal symmetry related to the metric
2-dimensionality of the 3-D light-like 3-surface. This symmetry is identifiable as TGD counterpart
of the Kac Moody symmetry of string models. The challenge is to understand the relationship of
this symmetry to WCW geometry and the interaction between the two conformal symmetries.

The analog of conformal invariance in the light-like direction of X3
l and in the light-like radial

direction of δM4
± implies that the data at either X3 or X3

l are enough to determine WCW geometry.
This implies that the relevant data is contained to their intersection X2 plus 4-D tangent space of
X2 at least for finite regions of X3. This is the case if the deformations of X3

l not affecting X2

and preserving light likeness corresponding to zero modes or gauge degrees of freedom and induce
deformations of X3 also acting as zero modes. The outcome is effective 2-dimensionality. One
must be however cautious in order to not make over-statements. The reduction to 2-D theory in
global sense would trivialize the theory to string model like theory and does not occur even locally.
Moreover, the reduction to effectively 2-D theory must takes places for finite region of X3 only so
one has in well defined sense three-dimensionality in discrete sense. A more precise formulation of
this vision is in terms of hierarchy of causal diamonds (CDs) containing CDs containing.... The
introduction of sub-CD: s brings in improved measurement resolution and means also that effective
2-dimensionality is realized in the scale of sub-CD only.

One cannot over-emphasize the importance of the effective 2-dimensionality. It indeed simplifies
dramatically the earlier formulas for WCW metric involving 3-dimensional integrals over X3 ⊂
M4

+ × CP2 reducing now to 2-dimensional integrals. Note that X3 is determined by preferred
extremal property of X4(X3

l ) once X3
l is fixed and one can hope that this mapping is one-to-one.

The reduction of data to that associated with 2-D surfaces and their 4-D tangent space distribu-
tions conforms with the number theoretic vision about embedding space as having hyper-octonionic
structure [K15]: the commutative sub-manifolds of H have dimension not larger than two and for
them tangent space is complex sub-space of complexified octonion tangent space. Number the-
oretic counterpart of quantum measurement theory forces the reduction of relevant data to 2-D
commutative sub-manifolds of X3. These points are discussed in more detail in the next chapter
whereas in this chapter the consideration will be restricted to X3

l = δM4
+ case which involves all

essential aspects of the problem.

5.3 Magic Properties Of Light-Cone Boundary And Isometries Of WCW

The special conformal, metric and symplectic properties of the light cone of four-dimensional
Minkowski space: δM4

+, the boundary of four-dimensional light-cone is metrically 2-dimensional(!)
sphere allowing infinite-dimensional group of conformal transformations and isometries(!) as well
as Kähler structure. Kähler structure is not unique: possible Kähler structures of light-cone
boundary are parameterized by Lobatchevski space SO(3, 1)/SO(3). The requirement that the
isotropy group SO(3) of S2 corresponds to the isotropy group of the unique classical 3-momentum
assigned to X4(Y 3) defined as absolute minimum of Kähler action, fixes the choice of the complex
structure uniquely. Therefore group theoretical approach and the approach based on Kähler action
complement each other.

The allowance of an infinite-dimensional group of isometries isomorphic to the group of con-
formal transformations of 2-sphere is completely unique feature of the 4-dimensional light-cone
boundary. Even more, in case of δM4

+ × CP2 the isometry group of δM4
+ becomes localized with

respect to CP2! Furthermore, the Kähler structure of δM4
+ defines also symplectic structure.
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Hence any function of δM4
+×CP2 would serve as a Hamiltonian transformation acting in both

CP2 and δM4
+ degrees of freedom. These transformations obviously differ from ordinary local

gauge transformations. This group leaves the symplectic form of δM4
+ × CP2, defined as the sum

of light-cone and CP2 symplectic forms, invariant. The group of symplectic transformations of
δM4

+ × CP2 is a good candidate for the isometry group of WCW.
The approximate symplectic invariance of Kähler action is broken only by gravitational effects

and is exact for vacuum extremals. This suggests that Kähler function is in a good approxi-
mation invariant under the symplectic transformations of CP2 would mean that CP2 symplectic
transformations correspond to zero modes having zero norm in the Kähler metric of WCW.

The groups G and H, and thus WCW itself, should inherit the complex structure of the light-
cone boundary. The diffeomorphims of M4 act as dynamical symmetries of vacuum extremals.
The radial Virasoro localized with respect to S2 × CP2 could in turn act in zero modes perhaps
inducing conformal transformations: note that these transformations lead out from the symmetric
space associated with given values of zero modes.

5.4 Symplectic Transformations Of ∆M4
+ ×CP2 As Isometries Of WCW

The symplectic transformations of δM4
+ × CP2 are excellent candidates for inducing symplectic

transformations of the WCW acting as isometries. There are however deep differences with respect
to the Kac Moody algebras.

1. The conformal algebra of WCW is gigantic when compared with the Virasoro + Kac Moody
algebras of string models as is clear from the fact that the Lie-algebra generator of a sym-
plectic transformation of δM4

+ × CP2 corresponding to a Hamiltonian which is product of
functions defined in δM4

+ and CP2 is sum of generator of δM4
+-local symplectic transforma-

tion of CP2 and CP2-local symplectic transformations of δM4
+. This means also that the

notion of local gauge transformation generalizes.

2. The physical interpretation is also quite different: the relevant quantum numbers label the
unitary representations of Lorentz group and color group, and the four-momentum labeling
the states of Kac Moody representations is not present. Physical states carrying no energy
and momentum at quantum level are predicted. The appearance of a new kind of angular
momentum not assignable to elementary particles might shed some light to the longstanding
problem of baryonic spin (quarks are not responsible for the entire spin of proton). The
possibility of a new kind of color might have implications even in macroscopic length scales.

3. The central extension induced from the natural central extension associated with δM4
+×CP2

Poisson brackets is anti-symmetric with respect to the generators of the symplectic algebra
rather than symmetric as in the case of Kac Moody algebras associated with loop spaces. At
first this seems to mean a dramatic difference. For instance, in the case of CP2 symplectic
transformations localized with respect to δM4

+ the central extension would vanish for Cartan
algebra, which means a profound physical difference. For δM4

+ × CP2 symplectic algebra a
generalization of the Kac Moody type structure however emerges naturally.

The point is that δM4
+-local CP2 symplectic transformations are accompanied by CP2 local

δM4
+ symplectic transformations. Therefore the Poisson bracket of two δM4

+ local CP2

Hamiltonians involves a term analogous to a central extension term symmetric with respect
to CP2 Hamiltonians, and resulting from the δM4

+ bracket of functions multiplying the
Hamiltonians. This additional term could give the entire bracket of the WCW Hamiltonians
at the maximum of the Kähler function where one expects that CP2 Hamiltonians vanish
and have a form essentially identical with Kac Moody central extension because it is indeed
symmetric with respect to indices of the symplectic group.

5.5 Could The Zeros Of Riemann Zeta Define The Spectrum Of Super-
Symplectic Conformal Weights?

The idea about symmetric space is extremely beautiful but the identification of the precise form
of the Cartan decomposition is far from obvious. The basic problem concerns the spectrum of
conformal weights of the generators of the super-symplectic algebra.
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For the spinor modes at string world sheets the conformal weights are integers. The symplectic
generators are characterized by the conformal weight associated with the light-like radial coordinate
rM of δM4

± = S2×R+ plus quantum numbers associated with SO(3) acting at S2 in and with color
group SU(3). The simplest option would be that the conformal weights are simply integers also for
the symplectic algebra implying that Hamiltonians are proportional to rn. The complexification
at WCW level would be induced from n→ −n.

There is however also an alternative option to consider. The inspiration came from the finding
that quantum TGD leads naturally to an extension of Super Algebras by combining Ramond and
Neveu-Schwartz algebras into single algebra. This led to the introduction Virasoro generators and
generators of symplectic algebra of CP2 localized with respect to the light-cone boundary and
carrying conformal weights with a half integer valued real part.

1. The conformal weights h = −1/2 − i
∑
i yi, where zi = 1/2 + yi are non-trivial zeros of

Riemann Zeta, are excellent candidates for the super-symplectic ground state conformal
weights and for the generators of the symplectic algebra whose commutators generate the
algebra. Also the negatives h = 2n of the trivial zeros z = −2n, n > 0 can be included.
Thus the conjecture inspired by the work with Riemann hypothesis stating that the zeros
of Riemann Zeta appear at the level of basic quantum TGD gets some support. This raises
interesting speculations. The possibility of negative real part of conformal weight Re(h) =
−1/2 is intriguing since p-adic mass calculations demand that the ground state has negative
conformal weight (is tachyonic).

2. If the conjecture holds true, the generators of algebra (in the standard sense now), whose
commutators define the basis of the entire algebra, have conformal weights given by the
negatives of the zeros of Riemann Zeta or Dirac Zeta. The algebra would be generated as
commutators from the generators of g1 and g2 such that one has h = 2n > 0 for g1 and
h = 1/2 + iyi for g2. The resulting super-symplectic algebra could be christened as Riemann
algebra.

3. The spectrum of conformal weights would be of form h = n+ iy, n integer and y =
∑
niyi.

If mass squared is proportional to h, the value of h must be a real integer:
∑
niyi = 0. The

interpretation would be in terms of conformal confinement generalizing color confinement.

4. The scenario for the hierarchy of conformal symmetry breakings in the sense that only a sub-
algebra of full conformal algebra isomorphic with the original algebra (fractality) annihilates
the physical states, makes sense also now since the algebra has a hierarchy of sub-algebras
with the conformal weights of the full algebra scaled by integer n. This condition could be
true also for the scalings of the real part of h but now the sub-algebra is not isomorphic with
the original one. One can even consider the hierarchy of sub-algebras with imaginary parts
of weights which are multiples of y =

∑
miniyi. Also these algebras fail to be isomorphic

with the full algebra.

5. The requirement that ordinary Virasoro and Kac Moody generators annihilate physical states
corresponds now to the fact that the generators of h vanish at the point of WCW, which
remains invariant under the action of h. The maximum of Kähler function corresponds
naturally to this point and plays also an essential role in the integration over WCW by
generalizing the Gaussian integration of free quantum field theories.

5.6 Attempts To Identify WCW Hamiltonians

I have made several attempts to identify WCW Hamiltonians. The first two candidates referred
to as magnetic and electric Hamiltonians, emerged in a relatively early stage. The third candidate
is based on the formulation of quantum TGD using 3-D light-like surfaces identified as orbits of
partons. The proposal is out-of-date but the most recent proposal is obtained by a very straight-
forward generalization from the proposal for magnetic Hamiltonians discussed below.

5.6.1 Magnetic Hamiltonians

Assuming that the elements of the radial Virasoro algebra of δM4
+ have zero norm, one ends

up with an explicit identification of the symplectic structures of WCW. There is almost unique
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identification for the symplectic structure. WCW counterparts of δM4 × CP2 Hamiltonians are
defined by the generalized signedandunsigned Kähler magnetic fluxes

Qm(HA, X
2) = Z

∫
X2 HAJ

√
g2d

2x ,

Q+
m(HA, rM ) = Z

∫
X2 HA|J |

√
g2d

2x ,

J ≡ εαβJαβ .

(5.1)

HA is CP2 Hamiltonian multiplied by a function of coordinates of light cone boundary belonging
to a unitary representation of the Lorentz group. Z is a conformal factor depending on symplectic
invariants. The symplectic structure is induced by the symplectic structure of CP2.

The most general flux is superposition of signed and unsigned fluxes Qm and Q+
m.

Qα,βm (HA, X
2) = αQm(HA, X

2) + βQ+
m(HA, X

2) .

(5.2)

Thus it seems that symmetry arguments fix the form of the WCW metric apart from the presence
of a conformal factor Z multiplying the magnetic flux and the degeneracy related to the signed
and unsigned fluxes.

5.6.2 Generalization

The generalization for definition WCW super-Hamiltonians defining WCW gamma matrices is
discussed in detail in [K12] feeds in the wisdom gained about preferred extremals of Kähler action
and solutions of the Kähler-Dirac action: in particular, about their localization at string worlds
sheets (right handed neutrino could be an exception). Second quantized Noether charges in turn
define representation of WCW Hamiltonians as operators.

The basic formulas generalize as such: the only modification is that the super-Hamiltonian of
δM4
±×CP2 at given point of partonic 2-surface is replaced with the Noether super charge associated

with the Hamiltonian obtained by integrating the 1-D super current over string emanating from
partonic 2-surface. Right handed neutrino spinor is replaced with any mode of the Kähler-Dirac
operator localized at string world sheet in the case of Kac-Moody sub-algebra of super-symplectic
algebra corresponding to symplectic isometries at light-cone boundary and CP2. The original
proposal involved only the contractions with covariantly constant right- handed neutrino spinor
mode but now one can allow contractions with all spinor modes - both quark like and leptonic
ones. One obtains entire super-symplectic algebra and the direct sum of these algebras is used
to construct physical states. This step is analogous to the replacement of point like particle with
string.

The resulting super Hamiltonians define WCW gamma matrices. They are labelled by two con-
formal weights. The first one is the conformal weight associated with the light-like coordinate of
δM4
±×CP2. Second conformal weight is associated with the spinor mode and the coordinate along

stringy curve and corresponds to the usual stringy conformal weight. The symplectic conformal
weight can be more general - I have proposed its spectrum to be generated by the zeros of Rie-
mann zeta. The total conformal weight of a physical state would be non-negative integer meaning
conformal confinement. Symplectic conformal symmetry can be assumed to be broken: an entire
hierarchy of breakings is obtained corresponding to hierarchies of sub-algebra of the symplectic
algebra isomorphic with it quantum criticalities, Planck constants, and dark matter.

The presence of two conformal weights is in accordance with the idea that a generalization of
conformal invariance to 4-D situation is in question. If Yangian extension of conformal symmetries
is possible and would bring an additional integer n telling the degree of multilocality of Yangian
generators defined as the number of partonic 2-surfaces at which the generator acts. For conformal
algebra degree of multilocality equals to n = 1.
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5.7 General Expressions For The Symplectic And Kähler Forms

One can derive general expressions for symplectic and Kähler forms as well as Kähler metric of
WCW in the basis provided by symplectic generators. These expressions as such do not tell much.

To obtain more information about WCW Hamiltonians one can use the hypothesis that the
Hamiltonians of the boundary of CD can be lifted to the Hamiltonians of WCW isometries defining
the tangent space basis of WCW. Symmetry considerations inspire the notion of flux Hamiltonian.
Hamiltonians seem to be crucial for the realization of symmetries in WCW degrees of freedom using
harmonics of WCW spinor fields. Also the construction of WCW Killing vector fields represents a
technical problem.

The Poisson brackets of the WCW Hamiltonians can be calculated without the knowledge of
the contravariant Kähler form by using the fact that the Poisson bracket of WCW Hamiltonians
is WCW Hamiltonian associated with the Poisson bracket of embedding space Hamiltonians. The
explicit calculation of Kähler form is difficult using only symmetry considerations and the attempts
that I have made are not convincing.

The expression of Kähler metric in terms of anti-commutators of symplectic Noether charges
and super-charges gives explicit formulas as integrals over a string connecting two partonic 2-
surfaces. A natural guess for super Hamiltonian is that one integrates over the strings connecting
partonic 2-surface to each other with the weighting coming from Kähler flux and embedding space
Hamiltonian replaced with the fermionic super Hamiltonian of Hamiltonian of the string. It is not
clear whether the vanishing of induced W fields at string world sheets allows all possible strings
or only a discrete set of them as finite measurement resolution would suggest. If all points pairs
can be connected by string one has effective 3-dimensionality.

5.7.1 Closedness requirement

The fluxes of Kähler magnetic and electric fields for the Hamiltonians of δM4
+×CP2 suggest a gen-

eral representation for the components of the symplectic form of the WCW. The basic requirement
is that Kähler form satisfies the defining condition

X · J(Y,Z) + J([X,Y ], Z) + J(X, [Y,Z]) = 0 , (5.3)

where X,Y, Z are now vector fields associated with Hamiltonian functions defining WCW coordi-
nates.

5.7.2 Matrix elements of the symplectic form as Poisson brackets

Quite generally, the matrix element of J(X(HA), X(HB)) between vector fields X(HA)) and
X(HB)) defined by the Hamiltonians HA and HB of δM4

+ × CP2 isometries is expressible as
Poisson bracket

JAB = J(X(HA), X(HB)) = {HA, HB} . (5.4)

JAB denotes contravariant components of the symplectic form in coordinates given by a subset of
Hamiltonians. The proposal is that the magnetic flux Hamiltonians Qα,βm (HA,k) provide an explicit
representation for the Hamiltonians at the level of WCW so that the components of the symplectic
form of WCW are expressible as classical charges for the Poisson brackets of the Hamiltonians of
the light-cone boundary:

J(X(HA), X(HB)) = Qα,βm ({HA, HB}) .

(5.5)

Recall that the superscript α, β refers the coefficients of J and |J | in the superposition of these
Kähler magnetic fluxes. Note that Qα,βm contains unspecified conformal factor depending on sym-
plectic invariants characterizing Y 3 and is unspecified superposition of signed and unsigned mag-
netic fluxes.
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This representation does not carry information about the tangent space of space-time surface
at the partonic 2-surface, which motivates the proposal that also electric fluxes are present and
proportional to magnetic fluxes with a factor K, which is symplectic invariant so that commutators
of flux Hamiltonians come out correctly. This would give

Qα,βm (HA)em = Qα,βe (HA) +Qα,βm (HA) = (1 +K)Qα,βm (HA) . (5.6)

Since Kähler form relates to the standard field tensor by a factor e/~, flux Hamiltonians are
dimensionless so that commutators do not involve ~. The commutators would come as

Qα,βem ({HA, HB})→ (1 +K)Qα,βm ({HA, HB}) . (5.7)

The factor 1 +K plays the same role as Planck constant in the commutators.
WCW Hamiltonians vanish for the extrema of the Kähler function as variational derivatives

of the Kähler action. Hence Hamiltonians are good candidates for the coordinates appearing as
coordinates in the perturbative functional integral around extrema (with maxima giving dominat-
ing contribution). It is clear that WCW coordinates around a given extremum include only those
Hamiltonians, which vanish at extremum (that is those Hamiltonians which span the tangent space
of G/H). In Darboux coordinates the Poisson brackets reduce to the symplectic form

{P I , QJ} = JIJ = JIδ
I,J .

JI = 1 . (5.8)

It is not clear whether Darboux coordinates with JI = 1 are possible in the recent case: probably
the unit matrix on right hand side of the defining equation is replaced with a diagonal matrix
depending on symplectic invariants so that one has JI 6= 1. The integration measure is given by the
symplectic volume element given by the determinant of the matrix defined by the Poisson brackets
of the Hamiltonians appearing as coordinates. The value of the symplectic volume element is given
by the matrix formed by the Poisson brackets of the Hamiltonians and reduces to the product

V ol =
∏
I

JI

in generalized Darboux coordinates.
Kähler potential (that is gauge potential associated with Kähler form) can be written in Dar-

boux coordinates as

A =
∑
I

JIPIdQ
I . (5.9)

5.7.3 General expressions for Kähler form, Kähler metric and Kähler function

The expressions of Kähler form and Kähler metric in complex coordinates can obtained by trans-
forming the contravariant form of the symplectic form from symplectic coordinates provided by
Hamiltonians to complex coordinates:

JZ
iZ̄j

= iGZ
iZ̄j

= ∂HAZi∂HB Z̄jJAB , (5.10)

where JAB is given by the classical Kähler charge for the light-cone Hamiltonian {HA, HB}. Com-
plex coordinates correspond to linear coordinates of the complexified Lie-algebra providing expo-
nentiation of the isometry algebra via exponential mapping. What one must know is the precise
relationship between allowed complex coordinates and Hamiltonian coordinates: this relationship
is in principle calculable. In Darboux coordinates the expressions become even simpler:

JZ
iZ̄j

= iGZ
iZ̄j

=
∑
I

J(I)(∂P iZi∂QI Z̄j − ∂QIZi∂P I Z̄j) . (5.11)



5.7 General Expressions For The Symplectic And Kähler Forms 30

Kähler function can be formally integrated from the relationship

AZi = i∂ZiK ,

AZ̄i = −i∂ZiK . (5.12)

holding true in complex coordinates. Kähler function is obtained formally as integral

K =

∫ Z

0

(AZidZi −AZ̄idZ̄i) . (5.13)

5.7.4 Diff(X3) invariance and degeneracy and conformal invariances of the symplec-
tic form

J(X(HA), X(HB)) defines symplectic form for the coset space G/H only if it is Diff(X3) degener-
ate. This means that the symplectic form J(X(HA), X(HB)) vanishes whenever Hamiltonian HA

or HB is such that it generates diffeomorphism of the 3-surface X3. If effective 2-dimensionality
holds true, J(X(HA), X(HB)) vanishes if HA or HB generates two-dimensional diffeomorphism
d(HA) at the surface X2

i .
One can always write

J(X(HA), X(HB)) = X(HA)Q(HB |X2
i ) .

If HA generates diffeomorphism, the action of X(HA) reduces to the action of the vector field XA

of some X2
i -diffeomorphism. Since Q(HB |rM ) is manifestly invariant under the diffemorphisms of

X2, the result is vanishing:

XAQ(HB |X2
i ) = 0 ,

so that Diff2 invariance is achieved.
The radial diffeomorphisms possibly generated by the radial Virasoro algebra do not produce

trouble. The change of the flux integrand X under the infinitesimal transformation rM → rM+εrnM
is given by rnMdX/drM . Replacing rM with r−n+1

M /(−n+ 1) as variable, the integrand reduces to
a total divergence dX/du the integral of which vanishes over the closed 2-surface X2

i . Hence radial
Virasoro generators having zero norm annihilate all matrix elements of the symplectic form. The
induced metric of X2

i induces a unique conformal structure and since the conformal transformations
of X2

i can be interpreted as a mere coordinate changes, they leave the flux integrals invariant.

5.7.5 Complexification and explicit form of the metric and Kähler form

The identification of the Kähler form and Kähler metric in symplectic degrees of freedom follows
trivially from the identification of the symplectic form and definition of complexification. The
requirement that Hamiltonians are eigen states of angular momentum (and possibly Lorentz boost
generator), isospin and hypercharge implies physically natural complexification. In order to fix the
complexification completely one must introduce some convention fixing which states correspond
to “positive” frequencies and which to “negative frequencies” and which to zero frequencies that
is to decompose the generators of the symplectic algebra to three sets Can+, Can− and Can0.
One must distinguish between Can0 and zero modes, which are not considered here at all. For
instance, CP2 Hamiltonians correspond to zero modes.

The natural complexification relies on the imaginary part of the radial conformal weight whereas
the real part defines the g = t + h decomposition naturally. The wave vector associated with the
radial logarithmic plane wave corresponds to the angular momentum quantum number associated
with a wave in S1 in the case of Kac Moody algebra. One can imagine three options.

1. It is quite possible that the spectrum of k2 does not contain k2 = 0 at all so that the sector
Can0 could be empty. This complexification is physically very natural since it is manifestly
invariant under SU(3) and SO(3) defining the preferred spherical coordinates. The choice of
SO(3) is unique if the classical four-momentum associated with the 3-surface is time like so
that there are no problems with Lorentz invariance.
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2. If k2 = 0 is possible one could have

Can+ = {Ha
m,n,k=k1+ik2 , k2 > 0} ,

Can− = {Ha
m,n,k, k2 < 0} ,

Can0 = {Ha
m,n,k, k2 = 0} . (5.14)

3. If it is possible to n2 6= 0 for k2 = 0, one could define the decomposition as

Can+ = {Ha
m,n,k, k2 > 0 or k2 = 0, n2 > 0} ,

Can− = {Ha
m,n,k, k2 < 0 ork2 = 0, n2 < 0} ,

Can0 = {Ha
m,n,k, k2 = n2 = 0} . (5.15)

In this case the complexification is unique and Lorentz invariance guaranteed if one can fix
the SO(2) subgroup uniquely. The quantization axis of angular momentum could be chosen
to be the direction of the classical angular momentum associated with the 3-surface in its
rest system.

The only thing needed to get Kähler form and Kähler metric is to write the half Poisson bracket
defined by Eq. 5.17

Jf (X(HA), X(HB)) = 2Im (iQf ({HA, HB}−+)) ,

Gf (X(HA), X(HB)) = 2Re (iQf ({HA, HB}−+)) . (5.16)

Symplectic form, and thus also Kähler form and Kähler metric, could contain a conformal
factor depending on the isometry invariants characterizing the size and shape of the 3-surface. At
this stage one cannot say much about the functional form of this factor.

5.7.6 Comparison of CP2 Kähler geometry with WCW geometry

The explicit discussion of the role of g = t + h decomposition of the tangent space of WCW
provides deep insights to the metric of the symmetric space. There are indeed many questions to
be answered. To what point of WCW (that is 3-surface) the proposed g = t + h decomposition
corresponds to? Can one derive the components of the metric and Kähler form from the Poisson
brackets of complexified Hamiltonians? Can one characterize the point in question in terms of the
properties of WCW Hamiltonians? Does the central extension of WCW reduce to the symplectic
central extension of the symplectic algebra or can one consider also other options?

1. Cartan decomposition for CP2

A good manner to gain understanding is to consider the CP2 metric and Kähler form at the
origin of complex coordinates for which the sub-algebra h = u(2) defines the Cartan decomposition.

1. g = t + h decomposition depends on the point of the symmetric space in general. In case
of CP2 u(2) sub-algebra transforms as g ◦ u(2) ◦ g−1 when the point s is replaced by gsg−1.
This is expected to hold true also in case of WCW (unless it is flat) so that the task is to
identify the point of WCW at which the proposed decomposition holds true.

2. The Killing vector fields of h sub-algebra vanish at the origin of CP2 in complex coordinates.
The corresponding Hamiltonians need not vanish but their Poisson brackets must vanish. It
is possible to add suitable constants to the Hamiltonians in order to guarantee that they
vanish at origin.

3. It is convenient to introduce complex coordinates and decompose isometry generators to
holomorphic components Ja+ = jak∂k and ja− = jak̄∂k̄. One can introduce what might be
called half Poisson bracket and half inner product defined as
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{Ha, Hb}−+ ≡ ∂k̄H
aJ k̄l∂lH

b

= jakJkl̄j
bl̄ = −i(ja+, jb−) . (5.17)

If the half Poisson bracket of embedding space Hamiltonians can be calculated. If it lifts
(this is assumption!) to a half Poisson bracket of corresponding WCW Hamiltonians, pne
can express Poisson bracket of Hamiltonians and the inner product of the corresponding
Killing vector fields in terms of real and imaginary parts of the half Poisson bracket:

{Ha, Hb} = 2Im
(
i{Ha, Hb}−+

)
,

(ja, jb) = 2Re
(
i(ja+, j

b
−)
)

= 2Re
(
i{Ha, Hb}−+

)
. (5.18)

What this means that Hamiltonians and their half brackets code all information about metric
and Kähler form. Obviously this is of utmost importance in the case of the WCW metric
whose symplectic structure and central extension are derived from those of CP2.

4. The objection is that the WCW Kähler metric identified as the anticommutators of fermionic
super charges have as an additional pair of labels the conformal weights of spinor modes
involved with the matrix element so that the number of matrix elements of WCW metric
would be larger than suggested by lifting. On the other hand, the standard conformal
symmetry realized as gauge invariance for strings would suggest that the Noether super
charges vanish for non-vanishing spinorial conformal weights and the two representations are
equivalent. The vanishing of conformal charges would realize the effective 2-dimensionality
which would be natural. This allows the breaking of conformal symmetry as gauge invariance
only for the symplectic algebra whereas the conformal symmetry for spinor modes would be
exact gauge symmetry as in string models. This conforms with the vision that symplectic
algebra is the dynamical conformal algebra.

Consider now the properties of the metric and Kähler form at the origin of WCW.

1. The relations satisfied by the half Poisson brackets can be written symbolically as

{h, h}−+ = 0 ,

Re (i{h, t}−+) = 0 , Im (i{h, t}−+) = 0 ,

Re (i{t, t}−+) 6= 0 , Im (i{t, t}−+) 6= 0 .

(5.19)

2. The first two conditions state that h vector fields have vanishing inner products at the
origin. The first condition states also that the Hamiltonians for the commutator algebra
[h, h] = SU(2) vanish at origin whereas the Hamiltonian for U(1) algebra corresponding
to the color hyper charge need not vanish although it can be made vanishing. The third
condition implies that the Hamiltonians of t vanish at origin.

3. The last two conditions state that the Kähler metric and form are non-vanishing between
the elements of t. Since the Poisson brackets of t Hamiltonians are Hamiltonians of h, the
only possibility is that {t, t} Poisson brackets reduce to a non-vanishing U(1) Hamiltonian
at the origin or that the bracket at the origin is due to the symplectic central extension. The
requirement that all Hamiltonians vanish at origin is very attractive aesthetically and forces to
interpret {t, t} brackets at origin as being due to a symplectic central extension. For instance,
for S2 the requirement that Hamiltonians vanish at origin would mean the replacement of the
Hamiltonian H = cos(θ) representing a rotation around z-axis with H3 = cos(θ)− 1 so that
the Poisson bracket of the generators H1 and H2 can be interpreted as a central extension
term.
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4. The conditions for the Hamiltonians of u(2) sub-algebra state that their variations with
respect to g vanish at origin. Thus u(2) Hamiltonians have extremum value at origin.

5. Also the Kähler function of CP2 has extremum at the origin. This suggests that in the case of
the WCW the counterpart of the origin corresponds to the maximum of the Kähler function.

2. Cartan algebra decomposition at the level of WCW

The discussion of the properties of CP2 Kähler metric at origin provides valuable guide lines
in an attempt to understand what happens at the level of WCW. The use of the half bracket
for WCW Hamiltonians in turn allows to calculate the matrix elements of the WCW metric and
Kähler form explicitly in terms of the magnetic or electric flux Hamiltonians.

The earlier construction was rather tricky and formula-rich and not very convincing physically.
Cartan decomposition had to be assigned with something and in lack of anything better it was
assigned with Super Virasoro algebra, which indeed allows this kind of decompositions but without
any strong physical justification.

It must be however emphasized that holography implying effective 2-dimensionality of 3-surfaces
in some length scale resolution is absolutely essential for this construction since it allows to effec-
tively reduce Kac-Moody generators associated with X3

l to X2 = X3
l ∩ δM4

±×CP2. In the similar
manner super-symplectic generators can be dimensionally reduced to X2. Number theoretical
compactification forces the dimensional reduction and the known extremals are consistent with
it [K1]. The construction of WCW spinor structure and metric in terms of the second quantized
spinor fields [K17] relies to this picture as also the recent view about M -matrix [K3].

In this framework the coset space decomposition becomes trivial.

1. The algebra g is labeled by color quantum numbers of CP2 Hamiltonians and by the label
(m,n, k) labeling the function basis of the light-cone boundary. Also a localization with
respect to X2 is needed. This is a new element as compared to the original view.

2. Super Kac-Moody algebra is labeled by color octet Hamiltonians and function basis of X2.
Since Lie-algebra action does not lead out of irreps, this means that Cartan algebra decom-
position is satisfied.

5.7.7 Comparison with loop groups

It is useful to compare the recent approach to the geometrization of the loop groups consisting of
maps from circle to Lie group G [A2], which served as the inspirer of the WCW geometry approach
but later turned out to not apply as such in TGD framework.

In the case of loop groups the tangent space T corresponds to the local Lie-algebra T (k,A) =
exp(ikφ)TA, where TA generates the finite-dimensional Lie-algebra g and φ denotes the angle
variable of circle; k is integer. The complexification of the tangent space corresponds to the
decomposition

T = {X(k > 0, A)} ⊕ {X(k < 0, A)} ⊕ {X(k = 0, A)} = T+ ⊕ T− ⊕ T0

of the tangent space. Metric corresponds to the central extension of the loop algebra to Kac Moody
algebra and the Kähler form is given by

J(X(k1 < 0, A), X(k2 > 0, B)) = k2δ(k1 + k2)δ(A,B) .

In present case the finite dimensional Lie algebra g is replaced with the Lie-algebra of the symplectic
transformations of δM4

+×CP2 centrally extended using symplectic extension. The scalar function
basis on circle is replaced with the function basis on an interval of length ∆rM with periodic
boundary conditions; effectively one has circle also now.

The basic difference is that one can consider two kinds of central extensions now.

1. Central extension is most naturally induced by the natural central extension ({p, q} = 1)
defined by Poisson bracket. This extension is anti-symmetric with respect to the generators
of the symplectic group: in the case of the Kac Moody central extension it is symmetric
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with respect to the group G. The symplectic transformations of CP2 might correspond to
non-zero modes also because they are not exact symmetries of Kähler action. The situation is
however rather delicate since k = 0 light-cone harmonic has a diverging norm due to the radial
integration unless one poses both lower and upper radial cutoffs although the matrix elements
would be still well defined for typical 3-surfaces. For Kac Moody group U(1) transformations
correspond to the zero modes. light-cone function algebra can be regarded as a local U(1)
algebra defining central extension in the case that only CP2 symplectic transformations
local with respect to δM4

+ act as isometries: for Kac Moody algebra the central extension
corresponds to an ordinary U(1) algebra. In the case that entire light-cone symplectic algebra
defines the isometries the central extension reduces to a U(1) central extension.

5.7.8 Symmetric space property implies Ricci flatness and isometric action of sym-
plectic transformations

The basic structure of symmetric spaces is summarized by the following structural equations

g = h+ t ,
[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .

(5.20)

In present case the equations imply that all commutators of the Lie-algebra generators of Can(6= 0)
having non-vanishing integer valued radial quantum number n2, possess zero norm. This condition
is extremely strong and guarantees isometric action of Can(δM4

+ × CP2) as well as Ricci flatness
of the WCW metric.

The requirement [t, t] ⊂ h and [h, t] ⊂ t are satisfied if the generators of the isometry algebra
possess generalized parity P such that the generators in t have parity P = −1 and the generators
belonging to h have parity P = +1. Conformal weight n must somehow define this parity. The
first possibility to come into mind is that odd values of n correspond to P = −1 and even values to
P = 1. Since n is additive in commutation, this would automatically imply h⊕t decomposition with
the required properties. This assumption looks however somewhat artificial. TGD however forces a
generalization of Super Algebras and N-S and Ramond type algebras can be combined to a larger
algebra containing also Virasoro and Kac Moody generators labeled by half-odd integers. This
suggests strongly that isometry generators are labeled by half integer conformal weight and that
half-odd integer conformal weight corresponds to parity P = −1 whereas integer conformal weight
corresponds to parity P = 1. Coset space would structure would state conformal invariance of the
theory since super-symplectic generators with integer weight would correspond to zero modes.

Quite generally, the requirement that the metric is invariant under the flow generated by vector
field X leads together with the covariant constancy of the metric to the Killing conditions

X · g(Y, Z) = 0 = g([X,Y ], Z) + g(Y, [X,Z]) . (5.21)

If the commutators of the complexified generators in Can( 6= 0) have zero norm then the two terms
on the right hand side of Eq. (5.21 ) vanish separately. This is true if the conditions

Qα,βm ({HA, {HB , HC}}) = 0 , (5.22)

are satisfied for all triplets of Hamiltonians in Can6=0. These conditions follow automatically from
the [t, t] ⊂ h property and guarantee also Ricci flatness as will be found later.

It must be emphasized that for Kähler metric defined by purely magnetic fluxes, one cannot pose
the conditions of Eq. (5.22 ) as consistency conditions on the initial values of the time derivatives of
embedding space coordinates whereas in general case this is possible. If the consistency conditions
are satisfied for a single surface on the orbit of symplectic group then they are satisfied on the
entire orbit. Clearly, isometry and Ricci flatness requirements and the requirement of time reversal
invariance might well force Kähler electric alternative.
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6 Representation Of WCW Metric As Anti-Commutators
Of Gamma Matrices Identified As Symplectic Super-Charges

WCW gamma matrices identified as symplectic super Noether charges suggest an elegant represen-
tation of WCW metric and Kähler form, which seems to be more practical than the representations
in terms of Kähler function or representations guessed by symmetry arguments.

This representation is equivalent with the somewhat dubious representation obtained using
symmetry arguments - that is by assuming that the half Poisson brackets of embedding space
Hamiltonians defining Kähler form and metric can be lifted to the level of WCW, if the conformal
gauge conditions hold true for the spinorial conformal algebra, which is the TGD counterpart of
the standard Kac-Moody type algebra of the ordinary strings models. For symplectic algebra the
hierarchy of breakings of super-conformal gauge symmetry is possible but not for the standard
conformal algebras associated with spinor modes at string world sheets.

6.1 Expression For WCW Kähler Metric As Anticommutators As Sym-
plectic Super Charges

During years I have considered several variants for the representation of symplectic Hamiltonians
and WCW gamma matrices and each of these proposals have had some weakness. The key question
has been whether the Noether currents assignable to WCW Hamiltonians should play any role in
the construction or whether one can use only the generalization of flux Hamiltonians.

The original approach based on flux Hamiltonians did not use Noether currents.

1. Magnetic flux Hamiltonians do not refer to the space-time dynamics and imply genuine
rather than only effective 2-dimensionality, which is more than one wants. If the sum of
the magnetic and electric flux Hamiltonians and the weak form of self duality is assumed,
effective 2-dimensionality might be achieved.

The challenge is to identify the super-partners of the flux Hamiltonians and postulate correct
anti-commutation relations for the induced spinor fields to achieve anti-commutation to flux
Hamiltonians. It seems that this challenge leads to ad hoc constructions.

2. For the purposes of generalization it is useful to give the expression of flux Hamiltonian.
Apart from normalization factors one would have

Q(HA) =

∫
X2

HAJµνdx
µ ∧ dxν .

Here A is a label for the Hamiltonian of δM4
± × CP2 decomposing to product of δM4

± and
CP2 Hamiltonians with the first one decomposing to a product of function of the radial light-
like coordinate rM and Hamiltonian depending on S2 coordinates. It is natural to assume
that Hamiltonians have well- defined SO(3) and SU(3) quantum numbers. This expressions
serves as a natural starting point also in the new approach based on Noether charges.

The approach identifying the Hamiltonians as symplectic Noether charges is extremely natural
from physics point of view but the fact that it leads to 3-D expressions involving the induced metric
led to the conclusion that it cannot work. In hindsight this conclusion seems wrong: I had not yet
realized how profound that basic formulas of physics really are. If the generalization of AdS/CFT
duality works, Kähler action can be expressed as a sum of string area actions for string world
sheets with string area in the effective metric given as the anti-commutator of the Kähler-Dirac
gamma matrices for the string world sheet so that also now a reduction of dimension takes place.
This is easy to understand if the classical Noether charges vanish for a sub-algebra of symplectic
algebra for preferred extremals.

1. If all end points for strings are possible, the recipe for constructing super-conformal generators
would be simple. The embedding space Hamiltonian HA appearing in the expression of the
flux Hamiltonian given above would be replaced by the corresponding symplectic quantum
Noether charge Q(HA) associated with the string defined as 1-D integral along the string. By
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replacing Ψ or its conjugate with a mode of the induced spinor field labeled by electroweak
quantum numbers and conformal weight nm one would obtain corresponding super-charged
identifiable as WCW gamma matrices. The anti-commutators of the super-charges would
give rise to the elements of WCW metric labelled by conformal weights n1, n2 not present in
the näıve guess for the metric. If one assumes that the fermionic super-conformal symmetries
act as gauge symmetries only ni = 0 gives a non-vanishing matrix element.

Clearly, one would have weaker form of effective 2-dimensionality in the sense that Hamilto-
nian would be functional of the string emanating from the partonic 2-surface. The quantum
Hamiltonian would also carry information about the presence of other wormhole contacts-
at least one- when wormhole throats carry Kähler magnetic monopole flux. If only discrete
set for the end points for strings is possible one has discrete sum making possible easy p-
adicization. It might happen that integrability conditions for the tangent spaces of string
world sheets having vanishing W boson fields do not allow all possible strings.

2. The super charges obtained in this manner are not however entirely satisfactory. The problem
is that they involve only single string emanating from the partonic 2-surface. The intuitive
expectation is that there can be an arbitrarily large number of strings: as the number of
strings is increased the resolution improves. Somehow the super-conformal algebra defined
by Hamiltonians and super-Hamiltonians should generalize to allow tensor products of the
strings providing more physical information about the 3-surface.

3. Here the idea of Yangian symmetry [K16] suggests itself strongly. The notion of Yangian
emerges from twistor Grassmann approach and should have a natural place in TGD. In
Yangian algebra one has besides product also co-product, which is in some sense ”time-
reversal” of the product. What is essential is that Yangian algebra is also multi-local.

The Yangian extension of the super-conformal algebra would be multi-local with respect to
the points of partonic surface (or multi-stringy) defining the end points of string. The basic
formulas would be schematically

OA1 = fABCT
B ⊗ TB ,

where a summation of B,C occurs and fABC are the structure constants of the algebra. The
operation can be iterated and gives a hierarchy of n-local operators. In the recent case
the operators are n-local symplectic super-charges with unit fermion number and symplectic
Noether charges with a vanishing fermion number. It would be natural to assume that also
the n-local gamma matrix like entities contribute via their anti-commutators to WCW metric
and give multi-local information about the partonic 2-surface and 3-surface.

The operation generating the algebra well-defined if one an assumes that the second quanti-
zation of induced spinor fields is carried out using the standard canonical quantization. One
could even assume that the points involved belong to different partonic 2-surfaces belong-
ing even at opposite boundaries of CD. The operation is also well-defined if one assumes
that induced spinor fields at different space-time points at boundaries of CD always anti-
commute. This could make sense at boundary of CD but lead to problems with embedding
space-causality if assumed for the spinor modes at opposite boundaries of CD.

6.2 Handful Of Problems With A Common Resolution

Theory building could be compared to pattern recognition or to a solving a crossword puzzle. It
is essential to make trials, even if one is aware that they are probably wrong. When stares long
enough to the letters which do not quite fit, one suddenly realizes what one particular crossword
must actually be and it is soon clear what those other crosswords are. In the following I describe
an example in which this analogy is rather concrete.

I will first summarize the problems of ordinary Dirac action based on induced gamma matrices
and propose Kähler-Dirac action as their solution.
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6.2.1 Problems associated with the ordinary Dirac action

In the following the problems of the ordinary Dirac action are discussed and the notion of Kähler-
Dirac action is introduced.

Minimal 2-surface represents a situation in which the representation of surface reduces to a
complex-analytic map. This implies that induced metric is hermitian so that it has no diagonal
components in complex coordinates (z, z) and the second fundamental form has only diagonal
components of type Hk

zz. This implies that minimal surface is in question since the trace of the
second fundamental form vanishes. At first it seems that the same must happen also in the more
general case with the consequence that the space-time surface is a minimal surface. Although
many basic extremals of Kähler action are minimal surfaces, it seems difficult to believe that
minimal surface property plus extremization of Kähler action could really boil down to the absolute
minimization of Kähler action or some other general principle selecting preferred extremals as Bohr
orbits [K5, K15].

This brings in mind a similar long-standing problem associated with the Dirac equation for the
induced spinors. The problem is that right-handed neutrino generates super-symmetry only pro-
vided that space-time surface and its boundary are minimal surfaces. Although one could interpret
this as a geometric symmetry breaking, there is a strong feeling that something goes wrong. In-
duced Dirac equation and super-symmetry fix the variational principle but this variational principle
is not consistent with Kähler action.

One can also question the implicit assumption that Dirac equation for the induced spinors
is consistent with the super-symmetry of the WCW geometry. Super-symmetry would obviously
require that for vacuum extremals of Kähler action also induced spinor fields represent vacua. This
is however not the case. This super-symmetry is however assumed in the construction of WCW
geometry so that there is internal inconsistency.

6.2.2 Super-symmetry forces Kähler-Dirac equation

The above described three problems have a common solution. Nothing prevents from starting
directly from the hypothesis of a super-symmetry generated by covariantly constant right-handed
neutrino and finding a Dirac action which is consistent with this super-symmetry. Field equations
can be written as

DαT
α
k = 0 ,

Tαk =
∂

∂hkα
LK . (6.1)

Here Tαk is canonical momentum current of Kähler action. If super-symmetry is present one can
assign to this current its super-symmetric counterpart

Jαk = νRΓkTαl ΓlΨ ,

DαJ
αk = 0 . (6.2)

having a vanishing divergence. The isometry currents currents and super-currents are obtained by
contracting Tαk and Jαk with the Killing vector fields of super-symmetries. Note also that the
super current

Jα = νRT
α
l ΓlΨ (6.3)

has a vanishing divergence.
By using the covariant constancy of the right-handed neutrino spinor, one finds that the diver-

gence of the super current reduces to

DαJ
αk = νRΓkTαl ΓlDαΨ .

(6.4)
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The requirement that this current vanishes is guaranteed if one assumes that Kähler-Dirac equation

Γ̂αDαΨ = 0 ,

Γ̂α = Tαl Γl . (6.5)

This equation must be derivable from a Kähler-Dirac action. It indeed is. The action is given by

L = ΨΓ̂αDαΨ . (6.6)

Thus the variational principle exists. For this variational principle induced gamma matrices are
replaced with Kähler-Dirac gamma matrices and the requirement

DµΓ̂µ = 0 (6.7)

guaranteeing that super-symmetry is identically satisfied if the bosonic field equations are satis-
fied. For the ordinary Dirac action this condition would lead to the minimal surface property.
What sounds strange that the essentially hydrodynamical equations defined by Kähler action have
fermionic counterpart: this is very far from intuitive expectations raised by ordinary Dirac equation
and something which one might not guess without taking super-symmetry very seriously.

As a matter fact, any mode of Kähler-Dirac equation contracted with second quantized induced
spinor field or its conjugate defines a conserved super charge. Also super-symplectic Noether
charges and their super counterparts can be assigned to symplectic generators as Noether charges
but they need not be conserved.

6.2.3 Second quantization of the K-D action

Second quantization of Kähler-Dirac action is crucial for the construction of the Kähler metric of
world of classical worlds as anti-commutators of gamma matrices identified as super-symplectic
Noether charges. To get a unique result, the anti-commutation relations must be fixed uniquely.
This has turned out to be far from trivial.

1. Canonical quantization works after all

The canonical manner to second quantize fermions identifies spinorial canonical momentum
densities and their conjugates as Π = ∂LKD

/∂Ψ = ΨΓt and their conjugates. The vanishing of Γt

at points, where the induced Kähler form J vanishes can cause problems since anti-commutation
relations are not internally consistent anymore. This led me to give up the canonical quantization
and to consider various alternatives consistent with the possibility that J vanishes. They were
admittedly somewhat ad hoc. Correct (anti-)commutation relations for various fermionic Noether
currents seem however to fix the anti-commutation relations to the standard ones. It seems that it
is better to be conservative: the canonical method is heavily tested and turned out to work quite
nicely.

The canonical manner to second quantize fermions identifies spinorial canonical momentum
densities and their conjugates as Π = ∂LKD

/∂Ψ = ΨΓt and their conjugates. The vanishing of Γt

at points, where the induced Kähler form J vanishes can cause problems since anti-commutation
relations are not internally consistent anymore. This led originally to give up the canonical quan-
tization and to consider various alternatives consistent with the possibility that J vanishes. They
were admittedly somewhat ad hoc. Correct commutation relations for various fermionic Noether
currents seem however to fix the anti-commutation relations to the standard ones.

Consider first the 4-D situation without the localization to 2-D string world sheets. The canon-
ical anti-commutation relations would state {Π,Ψ} = δ3(x, y) at the space-like boundaries of the
string world sheet at either boundary of CD. At points where J and thus T t vanishes, canonical
momentum density vanishes identically and the equation seems to be inconsistent.

If fermions are localized at string world sheets assumed to always carry a non-vanishing J at
their boundaries at the ends of space-time surfaces, the situation changes since Γt is non-vanishing.
The localization to string world sheets, which are not vacua saves the situation. The problem is
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that the limit when string approaches vacuum could be very singular and discontinuous. In the
case of elementary particle strings are associated with flux tubes carrying monopole fluxes so that
the problem disappears.

It is better to formulate the anti-commutation relations for the modes of the induced spinor
field. By starting from

{Π(x),Ψ(y)} = δ1(x, y)

(6.8)

and contracting with Ψ(x) and Π(y) and integrating, one obtains using orthonormality of the
modes of Ψ the result

{b†m, bn} = γ0δm,n

(6.9)

holding for the nodes with non-vanishing norm. At the limit J → 0 there are no modes with
non-vanishing norm so that one avoids the conflict between the two sides of the equation.

The proposed anti-commutator would realize the idea that the fermions are massive. The
following alternative starts from the assumption of 8-D light-likeness.

2. Does one obtain the analogy of SUSY algebra? In super Poincare algebra anti-commutators

of super-generators give translation generator: anti-commutators are proportional to pkσk. Could
it be possible to have an anti-commutator proportional to the contraction of Dirac operator pkσk of
4-momentum with quaternionic sigma matrices having or 8-momentum with octonionic 8-matrices?

This would give good hopes that the GRT limit of TGD with many-sheeted space-time replaced
with a slightly curved region of M4 in long length scales has large N SUSY as an approximate
symmetry: N would correspond to the maximal number of oscillator operators assignable to the
partonic 2-surface. If conformal invariance is exact, it is just the number of fermion states for
single generation in standard model.

1. The first promising sign is that the action principle indeed assigns a conserved light-like 8-
momentum to each fermion line at partonic 2-surface. Therefore octonionic representation
of sigma matrices makes sense and the generalization of standard twistorialization of four-
momentum also. 8-momentum can be characterized by a pair of octonionic 2-spinors (λ, λ)
such that one has λ λ) = pkσk.

2. Since fermion line as string boundary is 1-D curve, the corresponding octonionic sub-spaces
is just 1-D complex ray in octonion space and imaginary axes is defined by the associated
imaginary octonion unit. Non-associativity and non-commutativity play no role and it is as
if one had light like momentum in say z-direction.

3. One can select the ininitial values of spinor modes at the ends of fermion lines in such a
way that they have well-defined spin and electroweak spin and one can also form linear
superpositions of the spin states. One can also assume that the 8-D algebraic variant of
Dirac equation correlating M4 and CP2 spins is satisfied.

One can introduce oscillator operators b†m,α and bn,α with α denoting the spin. The motiva-
tion for why electroweak spin is not included as an index is due to the correlation between
spin and electroweak spin. Dirac equation at fermion line implies a complete correlation
between directions of spin and electroweak spin: if the directions are same for leptons (con-
vention only), they are opposite for antileptons and for quarks since the product of them
defines embedding space chirality which distinguishes between quarks and leptons. Instead
of introducing electroweak isospin as an additional correlated index one can introduce 4 kinds
of oscillator operators: leptonic and quark-like and fermionic and antifermionic.

4. For definiteness one can consider only fermions in leptonic sector. In hope of getting the
analog of SUSY algebra one could modify the fermionic anti-commutation relations such
that one has
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{b†m,α, bn,β} = ±iεαβδm,n .

(6.10)

Here α is spin label and ε is the standard antisymmetric tensor assigned to twistors. The anti-
commutator is clearly symmetric also now. The anti-commmutation relations with different
signs ± at the right-hand side distinguish between quarks and leptons and also between
fermions and anti-fermions. ± = 1 could be the convention for fermions in lepton sector.

5. One wants combinations of oscillator operators for which one obtains anti-commutators hav-
ing interpretation in terms of translation generators representing in terms of 8-momentum.
The guess would be that the oscillator operators are given by

B†n = b†m,αλ
α , Bn = λ

α
bm,α .

(6.11)

The anti-commutator would in this case be given by

{B†m, Bn} = iλ
α
εαβλ

βδm,n
= Tr(pkσk)δm,n = 2p0δm,n .

(6.12)

The inner product is positive for positive value of energy p0. This form of anti-commutator
obviously breaks Lorentz invariance and this us due the number theoretic selection of pre-
ferred time direction as that for real octonion unit. Lorentz invariance is saved by the fact
that there is a moduli space for the choices of the quaternion units parameterized by Lorentz
boosts for CD.

The anti-commutator vanishes for covariantly constant antineutrino so that it does not gen-
erate sparticle states. Only fermions with non-vanishing four-momentum do so and the
resulting algebra is very much like that associated with a unitary representation of super
Poincare algebra.

6. The recipe gives one helicity state for lepton in given mode m (conformal weight). One
has also antilepton with opposite helicity with ± = −1 in the formula defining the anti-
commutator. In the similar manner one obtains quarks and antiquarks.

7. Contrary to the hopes, one did not obtain the anti-commutator pkσk but Tr(p0σ0). 2p0

is however analogous to the action of Dirac operator pkσk to a massless spinor mode with
”wrong” helicity giving 2p0σ0. Massless modes with wrong helicity are expected to appear
in the fermionic propagator lines in TGD variant of twistor approach. Hence one might hope
that the resulting algebra is consistent with SUSY limit.

The presence of 8-momentum at each fermion line would allow also to consider the intro-
duction of anti-commutators of form pk(8)σk directly making N = 8 SUSY at parton level
manifest. This expression restricts for time-like M4 momenta always to quaternion and one
obtains just the standard picture.

8. Only the fermionic states with vanishing conformal weight seem to be realized if the confor-
mal symmetries associated with the spinor modes are realized as gauge symmetries. Super-
generators would correspond to the fermions of single generation standard model: 4+4 =8
states altogether. Interestingly, N = 8 correspond to the maximal SUSY for super-gravity.
Right-handed neutrino would obviously generate the least broken SUSY. Also now mixing of
M4 helicities induces massivation and symmetry breaking so that even this SUSY is broken.
One must however distinguish this SUSY from the super-symplectic conformal symmetry.
The space in which SUSY would be realized would be partonic 2-surfaces and this distin-
guishes it from the usual SUSY. Also the conservation of fermion number and absence of
Majorana spinors is an important distinction.
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3. What about quantum deformations of the fermionic oscillator algebra?

Quantum deformation introducing braid statistics is of considerable interest. Quantum defor-
mations are essentially 2-D phenomenon, and the experimental fact that it indeed occurs gives a
further strong support for the localization of spinors at string world sheets. If the existence of
anyonic phases is taken completely seriously, it supports the existence of the hierarchy of Planck
constants and TGD view about dark matter. Note that the localization also at partonic 2-surfaces
cannot be excluded yet.

I have wondered whether quantum deformation could relate to the hierarchy of Planck constants
in the sense that n = heff/h corresponds to the value of deformation parameter q = exp(i2π/n).

A q-deformation of Clifford algebra of WCW gamma matrices is required. Clifford algebra
is characterized in terms of anti-commutators replaced now by q-anticommutators. The natural
identification of gamma matrices is as complexified gamma matrices. For q-deformation q-anti-
commutators would define WCW Kähler metric. The commutators of the supergenerators should
still give anti-symmetric sigma matrices. The q-anticommutation relations should be same in
the entire sector of WCW considered and be induced from the q-anticommutation relations for
the oscillator operators of induced spinor fields at string world sheets, and reflect the fact that
permutation group has braid group as covering group in 2-D case so that braid statistics becomes
possible.

In [A5] (http://tinyurl.com/y9e6pg4d) the q-deformations of Clifford algebras are discussed,
and this discussion seems to apply in TGD framework.

1. It is assumed that a Lie-algebra g has action in the Clifford algebra. The q-deformations of
Clifford algebra is required to be consistent with the q-deformation of the universal enveloping
algebra Ug.

2. The simplest situation corresponds to group su(2) so that Clifford algebra elements are
labelled by spin ±1/2. In this case the q-anticommutor for creation operators for spin up
states reduces to an anti-commutator giving q-deformation Iq of unit matrix but for the spin
down states one has genuine q-anti-commutator containing besides Iq also number operator
for spin up states at the right hand side.

3. The undeformed anti-commutation relations can be witten as

P+kl
ij akal = 0 , P+kl

ij a†ka
†
l = 0 , aia†j + P ihjka

†
ha
k = δij1 .

(6.13)

Here P klij = δilδ
j
k is the permutator and P+kl

ij = (1 + P )/2 is projector. The q-deformation
reduces to a replacement of the permutator and projector with q-permutator Pq and q-
projector and P+

q , which are both fixed by the quantum group.

4. Also the condition that deformed algebra has same Poincare series as the original one is
posed. This says that the representation content is not changed that is the dimensions of
summands in a representation as direct sum of graded sub-spaces are same for algebra and
its q-deformation. If one has quantum group in a strict sense of the word (quasi-triangularity
(genuine braid group) rather that triangularity requiring that the square of the deformed
permutator Pq is unit matrix, one can have two situations.

(a) g = sl(N) (special linear group such as SL(2, F ), F = R,C) or g = Sp(N = 2n)
(symplectic group such as Sp(2) = SL(2, R)), which is subgroup of sl(N). Creation
(annihilation-) operators must form the N -dimensional defining representation of g.

(b) g = sl(N) and one has direct sum of M N -dimensional defining representations of g.
The M copies of representation are ordered so that they can be identified as strands of
braid so that the deformation makes sense at the space-like ends of string world sheet
naturally. q-projector is proportional to so called universal R-matrix.

5. It is also shown that q-deformed oscillator operators can be expressed as polynomials of the
ordinary ones.

http://tinyurl.com/y9e6pg4d


7. Ricci Flatness And Divergence Cancelation 42

The following argument suggest that the g must correspond to the minimal choices sl(2, R) (or
su(2)) in TGD framework.

1. The q-Clifford algebra structure of WCW should be induced from that for the fermionic
oscillator algebra. g cannot correspond to su(2)spin × su(2)ew since spin and weak isospin
label fermionic oscillator operators beside conformal weights but must relate closely to this
group. The physical reason is that the separate conservation of quark and lepton numbers
and light-likeness in 8-D sense imply correlations between the components of the spinors and
reduce g.

2. For a given H-chirality (quark/ lepton) 8-D light-likeness forced by massless Dirac equation at
the light-like boundary of the string world sheet at parton orbit implies correlation between
M4 and CP2 chiralities. Hence there are 4+4 spinor components corresponding to fermions
and antifermions with physical (creation oeprators) and unphysical (annihilation operators)
polarizations. This allows two creation operators with given H-chirality (quark or lepton)
and fermion number. Same holds true for antifermions. By fermion number conservation
one obtains a reduction to SU(2) doublets and the quantum group would be sl(2) = sp(2)
for which “special linear” implies “symplectic”.

7 Ricci Flatness And Divergence Cancelation

Divergence cancelation in WCW integration requires Ricci flatness and in this section the argu-
ments in favor of Ricci flatness are discussed in detail.

7.1 Inner Product From Divergence Cancelation

Forgetting the delicacies related to the non-determinism of the Kähler action, the inner product
is given by integrating the usual Fock space inner product defined at each point of WCW over
the reduced WCW containing only the 3-surfaces Y 3 belonging to δH = δM4

+ × CP2 (“light-cone
boundary”) using the exponent exp(K) as a weight factor:

〈Ψ1|Ψ2〉 =

∫
Ψ1(Y 3)Ψ2(Y 3)exp(K)

√
GdY 3 ,

Ψ1(Y 3)Ψ2(Y 3) ≡ 〈Ψ1(Y 3)|Ψ2(Y 3)〉Fock . (7.1)

The degeneracy for the preferred extremals of Kähler action implies additional summation over the
degenerate extremals associated with Y 3. The restriction of the integration on light cone boundary
is Diff4 invariant procedure and resolves in elegant manner the problems related to the integration
over Diff4 degrees of freedom. A variant of the inner product is obtained dropping the bosonic
vacuum functional exp(K) from the definition of the inner product and by assuming that it is
included into the spinor fields themselves. Probably it is just a matter of taste how the necessary
bosonic vacuum functional is included into the inner product: what is essential that the vacuum
functional exp(K) is somehow present in the inner product.

The unitarity of the inner product follows from the unitary of the Fock space inner product
and from the unitarity of the standard L2 inner product defined by WCW integration in the set of
the L2 integrable scalar functions. It could well occur that Diff4 invariance implies the reduction
of WCW integration to C(δH).

Consider next the bosonic integration in more detail. The exponent of the Kähler function
appears in the inner product also in the context of the finite dimensional group representations. For
the representations of the non-compact groups (say SL(2, R)) in coset spaces (now SL(2, R)/U(1)
endowed with Kähler metric) the exponent of Kähler function is necessary in order to get square
integrable representations [B4]. The scalar product for two complex valued representation functions
is defined as

(f, g) =

∫
fgexp(nK)

√
gdV . (7.2)
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By unitarity, the exponent is an integer multiple of the Kähler function. In the present case only
the possibility n = 1 is realized if one requires a complete cancelation of the determinants. In finite
dimensional case this corresponds to the restriction to single unitary representation of the group
in question.

The sign of the action appearing in the exponent is of decisive importance in order to make
theory stable. The point is that the theory must be well defined at the limit of infinitely large
system. Minimization of action is expected to imply that the action of infinitely large system
is bound from above: the generation of electric Kähler fields gives negative contributions to the
action. This implies that at the limit of the infinite system the average action per volume is non-
positive. For systems having negative average density of action vacuum functional exp(K) vanishes
so that only configurations with vanishing average action per volume have significant probability.
On the other hand, the choice exp(−K) would make theory unstable: probability amplitude would
be infinite for all configurations having negative average action per volume. In the fourth part of
the book it will be shown that the requirement that average Kähler action per volume cancels has
important cosmological consequences.

Consider now the divergence cancelation in the bosonic integration. One can develop the Kähler
function as a Taylor series around maximum of Kähler function and use the contravariant Kähler
metric as a propagator. Gaussian and metric determinants cancel each other for a unique vacuum
functional. Ricci flatness guarantees that metric determinant is constant in complex coordinates so
that one avoids divergences coming from it. The non-locality of the Kähler function as a functional
of the 3-surface serves as an additional regulating mechanism: if K(X3) were a local functional of
X3 one would encounter divergences in the perturbative expansion.

The requirement that quantum jump corresponds to a quantum measurement in the sense of
quantum field theories implies that quantum jump involves localization in zero modes. Localization
in the zero modes implies automatically p-adic evolution since the decomposition of the WCW
into sectors DP labeled by the infinite primes P is determined by the corresponding decomposition
in zero modes. Localization in zero modes would suggest that the calculation of the physical
predictions does not involve integration over zero modes: this would dramatically simplify the
calculational apparatus of the theory. Probably this simplification occurs at the level of practical
calculations if U -matrix separates into a product of matrices associated with zero modes and fiber
degrees of freedom.

One must also calculate the predictions for the ratios of the rates of quantum transitions to
different values of zero modes and here one cannot actually avoid integrals over zero modes. To
achieve this one is forced to define the transition probabilities for quantum jumps involving a
localization in zero modes as

P (x, α→ y, β) =
∑
r,s

|S(r, α→ s, β)|2|Ψr(x)|2|Ψs(y)|2 ,

where x and y correspond to the zero mode coordinates and r and s label a complete state functional
basis in zero modes and S(r,m→ s, n) involves integration over zero modes. In fact, only in this
manner the notion of the localization in the zero modes makes mathematically sense at the level
of S-matrix. In this case also unitarity conditions are well-defined. In zero modes state function
basis can be freely constructed so that divergence difficulties could be avoided. An open question
is whether this construction is indeed possible.

Some comments about the actual evaluation of the bosonic functional integral are in order.

1. Since WCW metric is degenerate and the bosonic propagator is essentially the contravariant
metric, bosonic integration is expected to reduce to an integration over the zero modes. For
instance, isometry invariants are variables of this kind. These modes are analogous to the
parameters describing the conformal equivalence class of the orbit of the string in string
models.

2. αK is a natural small expansion parameter in WCW integration. It should be noticed that
αK , when defined by the criticality condition, could also depend on the coordinates param-
eterizing the zero modes.

3. Semiclassical approximation, which means the expansion of the functional integral as a sum
over the extrema of the Kähler function, is a natural approach to the calculation of the
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bosonic integral. Symmetric space property suggests that for the given values of the zero
modes there is only single extremum and corresponds to the maximum of the Kähler function.
There are theorems ( Duistermaat-Hecke theorem) stating that semiclassical approximation
is exact for certain systems (for example for integrable systems [A3] ). Symmetric space
property suggests that Kähler function might possess the properties guaranteeing the exact-
ness of the semiclassical approximation. This would mean that the calculation of the integral∫
exp(K)

√
GdY 3 and even more complex integrals involving WCW spinor fields would be

completely analogous to a Gaussian integration of free quantum field theory. This kind of
reduction actually occurs in string models and is consistent with the criticality of the Kähler
coupling constant suggesting that all loop integrals contributing to the renormalization of
the Kähler action should vanish. Also the condition that WCW integrals are continuable to
p-adic number fields requires this kind of reduction.

7.2 Why Ricci Flatness

It has been already found that the requirement of divergence cancelation poses extremely strong
constraints on the metric of the WCW. The results obtained hitherto are the following.

1. If the vacuum functional is the exponent of Kähler function one gets rid of the divergences
resulting from the Gaussian determinants and metric determinants: determinants cancel each
other.

2. The non-locality of the Kähler action gives good hopes of obtaining divergence free pertur-
bation theory.

The following arguments show that Ricci flatness of the metric is a highly desirable property.

1. Dirac operator should be a well defined operator. In particular its square should be well
defined. The problem is that the square of Dirac operator contains curvature scalar, which
need not be finite since it is obtained via two infinite-dimensional trace operations from the
curvature tensor. In case of loop spaces [A2] the Kähler property implies that even Ricci
tensor is only conditionally convergent. In fact, loop spaces with Kähler metric are Einstein
spaces (Ricci tensor is proportional to metric) and Ricci scalar is infinite.

In 3-dimensional case situation is even worse since the trace operation involves 3 summation
indices instead of one! The conclusion is that Ricci tensor had better to vanish in vibrational
degrees of freedom.

2. For Ricci flat metric the determinant of the metric is constant in geodesic complex coordinates
as is seen from the expression for Ricci tensor [A4]

Rkl̄ = ∂k∂l̄ln(det(g)) (7.3)

in Kähler metric. This obviously simplifies considerably functional integration over WCW:
one obtains just the standard perturbative field theory in the sense that metric determinant
gives no contributions to the functional integration.

3. The constancy of the metric determinant results not only in calculational simplifications: it
also eliminates divergences. This is seen by expanding the determinant as a functional Taylor
series with respect to the coordinates of WCW. In local complex coordinates the first term
in the expansion of the metric determinant is determined by Ricci tensor

δ
√
g ∝ Rkl̄zkz̄l . (7.4)

In WCW integration using standard rules of Gaussian integration this term gives a contri-
bution proportional to the contraction of the propagator with Ricci tensor. But since the
propagator is just the contravariant metric one obtains Ricci scalar as result. So, in order
to avoid divergences, Ricci scalar must be finite: this is certainly guaranteed if Ricci tensor
vanishes.
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4. The following group theoretic argument suggests that Ricci tensor either vanishes or is di-
vergent. The holonomy group of the WCW is a subgroup of U(n = ∞) (D = 2n is the
dimension of the Kähler manifold) by Kähler property and Ricci flatness is guaranteed if the
U(1) factor is absent from the holonomy group. In fact Ricci tensor is proportional to the
trace of the U(1) generator and since this generator corresponds to an infinite dimensional
unit matrix the trace diverges: therefore given element of the Ricci tensor is either infinite or
vanishes. Therefore the vanishing of the Ricci tensor seems to be a mathematical necessity.
This näıve argument doesn’t hold true in the case of loop spaces, for which Kähler metric
with finite non-vanishing Ricci tensor exists [A2] . Note however that also in this case the
sum defining Ricci tensor is only conditionally convergent.

There are indeed good hopes that Ricci tensor vanishes. By the previous argument the vanishing
of the Ricci tensor is equivalent with the absence of divergences in WCW integration. That
divergences are absent is suggested by the non-locality of the Kähler function as a functional of
3-surface: the divergences of local field theories result from the locality of interaction vertices.
Ricci flatness in vibrational degrees of freedom is not only necessary mathematically. It is also
appealing physically: one can regard Ricci flat WCW as a vacuum solution of Einstein’s equations
Gαβ = 0.

7.3 Ricci Flatness And Hyper Kähler Property

Ricci flatness property is guaranteed if WCW geometry is Hyper Kähler [A7, A1] (there exists
3 covariantly constant antisymmetric tensor fields, which can be regarded as representations of
quaternionic imaginary units). Hyper Kähler property guarantees Ricci flatness because the con-
tractions of the curvature tensor appearing in the components of the Ricci tensor transform to
traces over Lie algebra generators, which are SU(n) generators instead of U(n) generators so that
the traces vanish. In the case of the loop spaces left invariance implies that Ricci tensor in the
vibrational degrees is a multiple of the metric tensor so that Ricci scalar has an infinite value. This
is basically due to the fact that Kac-Moody algebra has U(1) central extension.

Consider now the arguments in favor of Ricci flatness of the WCW.

1. The symplectic algebra of δM4
+ takes effectively the role of the U(1) extension of the loop

algebra. More concretely, the SO(2) group of the rotation group SO(3) takes the role of
U(1) algebra. Since volume preserving transformations are in question, the traces of the
symplectic generators vanish identically and in finite-dimensional this should be enough for
Ricci flatness even if Hyper Kähler property is not achieved.

2. The comparison with CP2 allows to link Ricci flatness with conformal invariance. The ele-
ments of the Ricci tensor are expressible in terms of traces of the generators of the holonomy
group U(2) at the origin of CP2, and since U(1) generator is non-vanishing at origin, the Ricci
tensor is non-vanishing. In recent case the origin of CP2 is replaced with the maximum of
Kähler function and holonomy group corresponds to super-symplectic generators labelled by
integer valued real parts k1 of the conformal weights k = k1 + iρ. If generators with k1 = n
vanish at the maximum of the Kähler function, the curvature scalar should vanish at the
maximum and by the symmetric space property everywhere. These conditions correspond to
Virasoro conditions in super string models.

A possible source of difficulties are the generators having k1 = 0 and resulting as commutators
of generators with opposite real parts of the conformal weights. It might be possible to assume
that only the conformal weights k = k1 + iρ, k1 = 0, 1, ... are possible since it is the imaginary
part of the conformal weight which defines the complexification in the recent case. This would
mean that the commutators involve only positive values of k1.

3. In the infinite-dimensional case the Ricci tensor involves also terms which are non-vanishing
even when the holonomy algebra does not contain U(1) factor. It will be found that symmetric
space property guarantees Ricci flatness even in this case and the reason is essentially the
vanishing of the generators having k1 = n at the maximum of Kähler function.

There are also arguments in favor of the Hyper Kähler property.
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1. The dimensions of the embedding space and space-time are 8 and 4 respectively so that the
dimension of WCW in vibrational modes is indeed multiple of four as required by Hyper
Kähler property. Hyper Kähler property requires a quaternionic structure in the tangent
space of WCW. Since any direction on the sphere S2 defined by the linear combinations of
quaternionic imaginary units with unit norm defines a particular complexification physically,
Hyper Kähler property means the possibility to perform complexification in S2-fold ways.

2. S2-fold degeneracy is indeed associated with the definition of the complex structure of WCW.
First of all, the direction of the quantization axis for the spherical harmonics or for the eigen
states of Lorentz Cartan algebra at δM4

+ can be chosen in S2-fold ways. Quaternion conformal
invariance means Hyper Kähler property almost by definition and the S2-fold degeneracy for
the complexification is obvious in this case.

If these näıve arguments survive a more critical inspection, the conclusion would be that the
effective 2-dimensionality of light like 3-surfaces implying generalized conformal and symplectic
symmetries would also imply Hyper Kähler property of WCW and make the theory well-defined
mathematically. This obviously fixes the dimension of space-time surfaces as well as the dimension
of Minkowski space factor of the embedding space.

In the sequel we shall show that Ricci flatness is guaranteed provided that the holonomy group
of WCW is isomorphic to some subgroup of SU(n = ∞) instead of U(n = ∞) (n is the complex
dimension of WCW) implied by the Kähler property of the metric. We also derive an expression for
the Ricci tensor in terms of the structure constants of the isometry algebra and WCW metric. The
expression for the Ricci tensor is formally identical with that obtained by Freed for loop spaces:
the only difference is that the structure constants of the finite-dimensional group are replaced with
the group Can(δH). Also the arguments in favor of Hyper Kähler property are discussed in more
detail.

7.4 The Conditions Guaranteeing Ricci Flatness

In the case of Kähler geometry Ricci flatness condition can be characterized purely Lie-algebraically:
the holonomy group of the Riemann connection, which in general is subgroup of U(n) for Kähler
manifold of complex dimension n, must be subgroup of SU(n) so that the Lie-algebra of this group
consists of traceless matrices. This condition is easy to derive using complex coordinates. Ricci
tensor is given by the following expression in complex vielbein basis

RAB̄ = RAC̄BC̄ , (7.5)

where the latter summation is only over the antiholomorphic indices C̄. Using the cyclic identities

∑
cycl C̄BD̄

RAC̄BD̄ = 0 , (7.6)

the expression for Ricci tensor reduces to the form

RAB̄ = RAB̄CC , (7.7)

where the summation is only over the holomorphic indices C. This expression can be regarded as a
trace of the curvature tensor in the holonomy algebra of the Riemann connection. The trace is taken
over holomorphic indices only: the traces over holomorphic and anti-holomorphic indices cancel
each other by the antisymmetry of the curvature tensor. For Kähler manifold holonomy algebra is
subalgebra of U(n), when the complex dimension of manifold is n and Ricci tensor vanishes if and
only if the holonomy Lie-algebra consists of traceless matrices, or equivalently: holonomy group is
subgroup of SU(n). This condition is expected to generalize also to the infinite-dimensional case.

We shall now show that if WCW metric is Kähler and possesses infinite-dimensional isometry
algebra with the property that its generators form a complete basis for the tangent space (every
tangent vector is expressible as a superposition of the isometry generators plus zero norm vector)
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it is possible to derive a representation for the Ricci tensor in terms of the structure constants of
the isometry algebra and of the components of the metric and its inverse in the basis formed by the
isometry generators and that Ricci tensor vanishes identically for the proposed complexification
of the WCW provided the generators {HA,m 6=0, HB,n6=0} correspond to zero norm vector fields of
WCW.

The general definition of the curvature tensor as an operator acting on vector fields reads

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z . (7.8)

If the vector fields considered are isometry generators the covariant derivative operator is given by
the expression

∇XY = (AdXY −Ad∗XY −Ad∗YX)/2 ,

(Ad∗XY,Z) = (Y,AdXZ) , (7.9)

where AdXY = [X,Y ] and Ad∗X denotes the adjoint of AdX with respect to WCW metric.
In the sequel we shall assume that the vector fields in question belong to the basis formed by

the isometry generators. The matrix representation of AdX in terms of the structure constants
CX,Y :Z of the isometry algebra is given by the expression

AdmXn = CX,Y :Z ŶnZ
m ,

[X,Y ] = CX,Y :ZZ ,

Ŷ = g−1(Y, V )V ,

(7.10)

where the summation takes place over the repeated indices and Ŷ denotes the dual vector field of Y
with respect to the WCW metric. From its definition one obtains for Ad∗X the matrix representation

Ad∗mXn = CX,Y :Z Ŷ
mZn ,

Ad∗XY = CX,U :V g(Y, U)g−1(V,W )W = g(Y,U)g−1([X,U ],W )W , (7.11)

where the summation takes place over the repeated indices.
Using the representations of ∇X in terms of AdX and its adjoint and the representations of AdX

and Ad∗X in terms of the structure constants and some obvious identities (such as C[X,Y ],Z:V =
CX,Y :UCU,Z:V ) one can by a straightforward but tedious calculation derive a more detailed ex-
pression for the curvature tensor and Ricci tensor. Straightforward calculation of the Ricci tensor
has however turned to be very tedious even in the case of the diagonal metric and in the following
we shall use a more convenient representation [A2] of the curvature tensor applying in case of the
Kähler geometry.

The expression of the curvature tensor is given in terms of the so called Toeplitz operators TX
defined as linear operators in the “positive energy part” G+ of the isometry algebra spanned by
the (1, 0) parts of the isometry generators. In present case the positive and negative energy parts
and cm part of the algebra can be defined just as in the case of loop spaces:

G+ = {HAk|k > 0} ,

G− = {HAk|k < 0} ,

G0 = {HAk|k = 0} . (7.12)

Here HAk denote the Hamiltonians generating the symplectic transformations of δH. The positive
energy generators with non-vanishing norm have positive radial scaling dimension: k ≥ 0, which
corresponds to the imaginary part of the scaling momentum K = k1+iρ associated with the factors
(rM/r0)K . A priori the spectrum of ρ is continuous but it is quite possible that the spectrum of ρ
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is discrete and ρ = 0 does not appear at all in the spectrum in the sense that the flux Hamiltonians
associated with ρ = 0 elements vanish for the maximum of Kähler function which can be taken to
be the point where the calculations are done.

TX differs from AdX in that the negative energy part of AdXY = [X,Y ] is dropped away:

TX : G+ → G+ ,

Y → [X,Y ]+ . (7.13)

Here ”+” denotes the projection to “positive energy” part of the algebra. Using Toeplitz operators
one can associate to various isometry generators linear operators Φ(X0), Φ(X−) and Φ(X+) acting
on G+:

Φ(X0) = TX0
, X0εG0 ,

Φ(X−) = TX− , X−εG− ,

Φ(X+) = −T ∗X− , X+εG+ . (7.14)

Here “*” denotes hermitian conjugate in the diagonalized metric: the explicit representation Φ(X+)
is given by the expression [A2]

Φ(X+) = D−1TX−D ,

DX+ = d(X)X− ,

d(X) = g(X−, X+) . (7.15)

Here d(X) is just the diagonal element of metric assumed to be diagonal in the basis used. denotes
the conformal factor associated with the metric.

The representations for the action of ,Φ(X0), Φ(X−) and Φ(X+) in terms of metric and structure
constants of the isometry algebra are in the case of the diagonal metric given by the expressions

Φ(X0)Y+ = CX0,Y+:U+
U+ ,

Φ(X−)Y+ = CX−,Y+:U+
U+ ,

Φ(X+)Y+ =
d(Y )

d(U)
CX−,Y−:U−U+ . (7.16)

The expression for the action of the curvature tensor in positive energy part G+ of the isometry
algebra in terms of the these operators is given as [A2] :

R(X,Y )Z+ = {[Φ(X),Φ(Y )]− Φ([X,Y ])}Z+ . (7.17)

The calculation of the Ricci tensor is based on the observation that for Kähler manifolds Ricci
tensor is a tensor of type (1, 1), and therefore it is possible to calculate Ricci tensor as the trace of
the curvature tensor with respect to indices associated with G+.

Ricci(X+, Y−) = (Ẑ+, R(X+, Y−)Z+) ≡ Trace(R(X+, Y−)) ,

(7.18)

where the summation over Z+ generators is performed.
Using the explicit representations of the operators Φ one obtains the following explicit expres-

sion for the Ricci tensor

Ricci(X+, Y−) = Trace{[D−1TX+
D,TY− ]− T[X+,Y−]|G0+G−

− D−1T[X+,Y−]|G+
D} . (7.19)
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This expression is identical to that encountered in case of loop spaces and the following arguments
are repetition of those applying in the case of loop spaces.

The second term in the Ricci tensor is the only term present in the finite-dimensional case.
This term vanishes if the Lie-algebra in question consists of traceless matrices. Since symplectic
transformations are volume-preserving the traces of Lie-algebra generators vanish so that this term
is absent. The last term gives a non-vanishing contribution to the trace for the same reason.

The first term is quadratic in structure constants and does not vanish in case of loop spaces.
It can be written explicitly using the explicit representations of the various operators appearing in
the formula:

Trace{[D−1TX−D,TY− ]} =
∑
Z+,U+

[CX−,U−:Z−CY−,Z+:U+

d(U)

d(Z)

− CX−,Z−:U−CY−,U+:Z+

d(Z)

d(U)
] . (7.20)

Each term is antisymmetric under the exchange of U and Z and one might fail to conclude that
the sum vanishes identically. This is not the case. By the diagonality of the metric with respect
to radial quantum number, one has m(X−) = m(Y−) for the non-vanishing elements of the Ricci
tensor. Furthermore, one has m(U) = m(Z) −m(Y ), which eliminates summation over m(U) in
the first term and summation over m(Z) in the second term. Note however, that summation over
other labels related to symplectic algebra are present.

By performing the change U → Z in the second term one can combine the sums together and
as a result one has finite sum

∑
0<m(Z)<m(X)

[CX−,U−:Z−CY−,Z+:U+

d(U)

d(Z)
= C

∑
0<m(Z)<m(X)

m(X)

m(Z)−m(X)
,

C =
∑
Z,U

CX,U :ZCY,Z:U
d0(U)

d0(Z)
. (7.21)

Here the dependence of d(X) = |m(X)|d0(X) on m(X) is factored out; d0(X) does not depend on
kX . The dependence on m(X) in the resulting expression factorizes out, and one obtains just the
purely group theoretic term C, which should vanish for the space to be Ricci flat.

The sum is quadratic in structure constants and can be visualized as a loop sum. It is instructive
to write the sum in terms of the metric in the symplectic degrees of freedom to see the geometry
behind the Ricci flatness:

C =
∑
Z,U

g([Y,Z], U)g−1([X,U ], Z) . (7.22)

Each term of this sum involves a commutator of two generators with a non-vanishing norm. Since
tangent space complexification is inherited from the local coset space, the non-vanishing commuta-
tors in complexified basis are always between generators in Can6=0; that is they do not not belong
to rigid su(2)× su(3).

The condition guaranteeing Ricci flatness at the maximum of Kähler function and thus every-
where is simple. All elements of type [X6=0, Y6=0] vanish or have vanishing norm. In case of CP2

Kähler geometry this would correspond to the vanishing of the U(2) generators at the origin of CP2

(note that the holonomy group is U(2) in case of CP2). At least formally stronger condition is that
the algebra generated by elements of this type, the commutator algebra associated with Can6=0,
consist of elements of zero norm. Already the (possibly) weaker condition implies that adjoint map
AdX 6=0 and its hermitian adjoint Ad∗X6=0

create zero norm states. Since isometry conditions involve
also adjoint action the condition also implies that Can6=0 acts as isometries. More concrete form
for the condition is that all flux factors involving double Poisson bracket and three generators in
Can6=0 vanish:
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Qe({HA, {HB , HC}}) = 0 , for HA, HB , HC in Can6=0 . (7.23)

The vanishing of fluxes involving two Poisson brackets and three Hamiltonians guarantees isometry
invariance and Ricci flatness and, as found in [K5] , is implied by the [t, t] ⊂ h property of the
Lie-algebra of coset space G/H having symmetric space structure.

The conclusion is that the mere existence of the proposed isometry group (guaranteed by the
symmetric space property) implies the vanishing of the Ricci tensor and vacuum Einstein equations.
The existence of the infinite parameter isometry group in turn follows basically from the condition
guaranteeing the existence of the Riemann connection. Therefore vacuum Einstein equations seem
to arise, not only as a consequence of a physically motivated variational principle but as a math-
ematical consistency condition in infinite dimensional Kähler geometry. The flux representation
seems to provide elegant manner to formulate and solve these conditions and isometry invariance
implies Ricci flatness.

7.5 Is WCW Metric Hyper Kähler?

The requirement that WCW integral integration is divergence free implies that WCW metric is
Ricci flat. The so called Hyper-Kähler metrics [A7, A1] , [B8] are particularly nice representatives
of Ricci flat metrics. In the following the basic properties of Hyper-Kähler metrics are briefly
described and the problem whether Hyper Kähler property could realized in case of M4

+ × CP2 is
considered.

7.5.1 Hyper-Kähler property

Hyper-Kähler metric is a generalization of the Kähler metric. For Kähler metric metric tensor and
Kähler form correspond to the complex numbers 1 and i and therefore define complex structure
in the tangent space of the manifold. For Hyper Kähler metric tangent space allows three closed
Kähler forms I, J,K, which with respect to the multiplication obey the algebra of quaternionic
imaginary units and have square equal to - 1, which corresponds to the metric of Hyper Kähler
space.

I2 = J2 = K2 = −1 IJ = −JI = K, etc. . (7.24)

To define Kähler structure one must choose one of the Kähler forms or any linear combination
of I, J and K with unit norm. The group SO(3) rotates different Kähler structures to each
other playing thus the role of quaternion automorphisms. This group acts also as coordinate
transformations in Hyper Kähler manifold but in general fails to act as isometries.

If K is chosen to define complex structure then K is tensor of type (1, 1) in complex coordinates,
I and J being tensors of type (2, 0)+(0, 2). The forms I+ iJ and I− iJ are holomorphic and anti-
holomorphic forms of type (2, 0) and (0, 2) respectively and defined standard step operators I+ and
I− of SU(2) algebra. The holonomy group of Hyper-Kähler metric is always Sp(k), k ≤ dimM/4,
the group of k × k unitary matrices with quaternionic entries. This group is indeed subgroup of
SU(2k), so that its generators are traceless and Hyper Kähler metric is therefore Ricci flat.

Hyper Kähler metrics have been encountered in the context of 3-dimensional super symmetric
sigma models: a necessary prerequisite for obtaining N = 4 super-symmetric sigma model is that
target space allows Hyper Kähler metric [B8, B1] . In particular, it has been found that Hyper
Kähler property is decisive for the divergence cancelation.

Hyper-Kähler metrics arise also in monopole and instanton physics [A1] . The moduli spaces for
monopoles have Hyper Kähler property. This suggests that Hyper Kähler property is characteristic
for the configuration (or moduli) spaces of 4-dimensional Yang Mills types systems. Since YM
action appears in the definition of WCW metric there are hopes that also in present case the
metric possesses Hyper-Kähler property.

CP2 allows what might be called almost Hyper-Kähler structure known as quaternionion struc-
ture. This means that the Weil tensor of CP2 consists of three components in one-one correspon-
dence with components of iso-spin and only one of them- the one corresponding to Kähler form-
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is covariantly constant. The physical interpretation is in terms of electroweak symmetry breaking
selecting one isospin direction as a favored direction.

7.5.2 Does the “almost” Hyper-Kähler structure of CP2 lift to a genuine Hyper-
Kähler structure in WCW?

The Hyper-Kähler property of WCW metric does not seem to be in conflict with the general
structure of TGD.

1. In string models the dimension of the “space-time” is two and Weyl invariance and complex
structures play a decisive role in the theory. In present case the dimension of the space-time
is four and one therefore might hope that quaternions play a similar role. Indeed, Weyl
invariance implies YM action in dimension 4 and as already mentioned moduli spaces of
instantons and monopoles enjoy the Hyper Kähler property.

2. Also the dimension of the embedding space is important. The dimension of Hyper Kähler
manifold must be multiple of 4. The dimension of WCW is indeed infinite multiple of 8: each
vibrational mode giving one “8”.

3. The complexification of the WCW in symplectic degrees of freedom is inherited from S2×CP2

and CP2 Kähler form defines the symplectic form of WCW. The point is that CP2 Weyl tensor
has 3 covariantly constant components, having as their square metric apart from sign. One
of them is Kähler form, which is closed whereas the other two are non-closed forms and
therefore fail to define Kähler structure. The group SU(2) of electro-weak isospin rotations
rotate these forms to each other. It would not be too surprising if one could identify WCW
counterparts of these forms as representations of quaternionic units at the level of WCW.
The failure of the Hyper Kähler property at the level of CP2 geometry is due to the electro-
weak symmetry breaking and physical intuition (in particular, p-adic mass calculations [K9]
) suggests that electro-weak symmetry might not be broken at the level of WCW geometry).

A possible topological obstruction for the Hyper Kähler property is related to the cohomology
of WCW: the three Kähler forms must be co-homologically trivial as is clear from the following
argument. If any of 3 quaternionic 2-form is cohomologically nontrivial then by SO(3) symmetry
rotating Kähler forms to each other all must be co-homologically nontrivial. On the other hand,
electro-weak isospin rotation leads to a linear combination of 3 Kähler forms and the flux associated
with this form is in general not integer valued. The point is however that Kähler form forms only
the (1, 1) part of the symplectic form and must be co-homologically trivial whereas the zero mode
part is same for all complexifications and can be co-homologically nontrivial. The co-homological
non-triviality of the zero mode part of the symplectic form is indeed a nice feature since it fixes the
normalization of the Kähler function apart from a multiplicative integer. On the other hand the
hypothesis that Kähler coupling strength is analogous to critical temperature provides a dynamical
(and perhaps equivalent) manner to fix the normalization of the Kähler function.

Since the properties of the WCW metric are inherited from M4
+ × CP2 then also the Hyper

Kähler property should be understandable in terms of the embedding space geometry. In partic-
ular, the complex structure in CP2 vibrational degrees of freedom is inherited from CP2. Hyper
Kähler property implies the existence of a continuum (sphere S2) of complex structures: any linear
superposition of 3 independent Kähler forms defines a respectable complex structure. Therefore
also CP2 should have this continuum of complex structures and this is certainly not the case.

Indeed, if we had instead of CP2 Hyper Kähler manifold with 3 covariantly constant 2-forms
then it would be easy to understand the Hyper Kähler structure of WCW. Given the Kähler
structure of WCW would be obtained by replacing induced Kähler electric and magnetic fields in
the definition of flux factors Q(HA,m) with the appropriate component of the induced Weyl tensor.
CP2 indeed manages to be very nearly Hyper Kähler manifold!

How CP2 fails to be Hyper Kähler manifold can be seen in the following manner. The Weyl
tensor of CP2 allows three independent components, which are self dual as 2-forms and rotated to
each other by vielbein rotations.
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W03 = W12 ≡ 2I3 = 2(e0 ∧ e3 + e1 ∧ e2) ,

W01 = W23 ≡ I1 = −e0 ∧ e1 − e2 ∧ e3 ,

W02 = W31 ≡ I2 = −e0 ∧ e2 − e3 ∧ e1 . (7.25)

The component I3 is just the Kähler form of CP2. Remaining components are covariantly constant
only with respect to spinor connection and not closed forms so that they cannot be interpreted
as Maxwell fields. Their squares equal however apart from sign with the metric of CP2, when
appropriate normalization factor is used. If these forms were covariantly constant Kähler action
defined by any linear superposition of these forms would indeed define Kähler structure in WCW
and the group SO(3) would rotate these forms to each other. The projections of the components
of the Weyl tensor on 3-surface define 3 vector fields as their duals and only one of these vector
fields (Kähler magnetic field) is divergenceless. One might regard these 3 vector fields as counter
parts of quaternion units associated with the broken Hyper Kähler structure, that is quaternion
structure. The interpretation in terms of electro-weak symmetry breaking is obvious.

One cannot exclude the possibility that the symplectic invariance of the induced Kähler electric
field implies that the electric parts of the other two components of induced Weyl tensor are sym-
plectic invariants. This is the minimum requirement. What is however obvious is that the magnetic
parts cannot be closed forms for arbitrary 3-surfaces at light cone boundary. One counter example
is enough and CP2 type extremals seem to provide this counter example: the components of the
induced Weyl tensor are just the same as they are for CP2 and clearly not symplectically invariant.

Thus it seems that WCW could allow Hyper Kähler structure broken by electro-weak in-
teractions but it cannot be inherited from CP2. An open question is whether it allows gen-
uine quaternionic structure. Good prospects for obtaining quaternionic structure are provided by
the quaternionic counterpart QP2 of CP2, which is 8-dimensional and has coset space structure
QP2 = Sp(3)/Sp(2) × Sp(1). This choice does not seem to be consistent with the symmetries
of the standard model. Note however that the over all symmetry group is obtained by replacing
complex numbers with quaternions on the matrix representation of the standard model group.

7.5.3 Could different complexifications for M4
+ and light like surfaces induce Hyper

Kähler structure for WCW?

Quaternionic structure means also the existence of a family of complex structures parameterized
by a sphere S2. The complex structure of the WCW is inherited from the complex structure of
some light like surface.

In the case of the light cone boundary δM4
+ the complex structure corresponds to the choice

of quantization axis of angular momentum for the sphere rM = constant so that the coordinates
orthogonal to the quantization axis define a complex coordinate: the sphere S2 parameterizes these
choices. Thus there is a temptation to identify the choice of quantization axis with a particular
imaginary unit and Hyper Kähler structure would directly relate to the properties rotation group.
This would bring an additional item to the list of miraculous properties of light like surfaces of
4-dimensional space-times.

This might relate to the fact that WCW geometry is not determined by the symplectic algebra
of CP2 localized with respect to the light cone boundary as one might first expect but consists of
M4

+ × CP2 Hamiltonians so that infinitesimal symplectic transformation of CP2 involves always
also M4

+-symplectic transformation. M4
+ Hamiltonians are defined by a function basis generated

as products of the Hamiltonians H3 and H1 ± iH2 generating rotations with respect to three
orthogonal axes, and two of these Hamiltonians are complexified.

Also the light like 3-surfacesX3
l associated with quaternion conformal invariance are determined

by some 2-surface X2 and the choice of complex coordinates and if X2 is sphere the choices are
labelled by S2. In this case, the presence of quaternion conformal structure would be almost
obvious since it is possible to choose some complex coordinate in several ways and the choices are
labelled by S2. The choice of the complex coordinate in turn fixes 2-surface X2 as a surface for
which the remaining coordinates are constant. X2 need not however be located at the elementary
particle horizon unless one poses additional constraint. One might hope that different choices of X2

resulting in this manner correspond to all possible different selections of the complex structure and
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that this choice could fix uniquely the conformal equivalence class of X2 appearing as argument in
elementary particle vacuum functionals. If X2 has a more complex topology the identification is
not so clear but since conformal algebra SL(2,C) containing algebra of rotation group is involved,
one might argue that the choice of quantization axis also now involves S2 degeneracy. If these
arguments are correct one could conclude that Hyper Kähler structure is implicitly involved and
guarantees Ricci flatness of the WCW metric.
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